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A B S T R A C T

Robotic Odor Source Localization (OSL) technology enables mobile robots to detect and navigate unknown
odor sources in diverse environments. Traditional OSL methods, including bio-inspired, engineering-based, and
machine learning-based approaches, face limitations of lack of adaptability to varying environments, significant
computational resource requirements, and dependence on historical data. To overcome these challenges, we
present a knowledge-driven framework that leverages Large Language Models (LLMs) to improve the robot’s
navigation capabilities through contextual understanding and informed decision-making. A key feature of the
proposed work is integrating an LLM agent with a memory module, which stores past experiences and recalls
them during the decision-making process, allowing the robotic agent to make decisions based on current
sensory inputs and previously acquired knowledge. Compared to traditional deep learning-based methods, such
as Deep Q-Network (DQN), both simulation and real-world experiment results demonstrate that our framework
significantly outperforms it in terms of accuracy, efficiency, and generalization across different environmental
conditions.
1. Introduction

Olfaction, also known as the sense of smell, provides crucial infor-
mation about the environment. In nature, animals depend on olfaction
to perform life-essential activities, such as foraging [1], homing [2],
mate-seeking [3], and navigating in the environment [4,5]. A mobile
robot, integrated with gas or chemical sensors, could detect and trace
odors to find an unknown odor source within an environment. The
technology of using robots to locate odor sources is known as robotic
Odor Source Localization (OSL) [6,7]. In practice, robotic OSL finds its
applications in air pollutant localization [8], wildfire smoke tracing [9],
gas emission monitoring [10], and the detection of ocean hydrothermal
vents [11], among others.

The key to successfully locating an odor source is the design of an ef-
fective navigation algorithm, i.e., the OSL algorithm, which guides the
robot moving toward the odor source location based on sensor observa-
tions. Present OSL algorithms [12] include bio-inspired methods [13–
19] that mimic animal behaviors, engineering-based methods [20,21],
that use mathematical models, and machine learning-based methods
that rely on trained models. Bio-inspired methods, like the moth-
inspired algorithm, command a mobile robot to find an odor source by
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mimicking animal odor-searching behaviors [22–24]. However, these
methods follow pre-determined behavioral patterns that may not adapt
well to airflow-varying environments [25]. Engineering-based methods,
such as the particle filter-based algorithm, rely on mathematical models
to derive possible odor source locations and direct the robot to the
estimated source locations [26]. The downside of the engineering-based
method is computational complexity [27]. Since most engineering-
based methods divide the search area into multiple cells, and for each
cell, there will be a probability calculation to calculate the chance of
this cell containing the odor source. The computational complexity will
increase exponentially if the search area is large and broad. Machine
learning-based methods, including deep supervised and reinforcement
learning (RL) techniques, often require extensive training data and
computational resources [28]. These algorithms aim to model the com-
plex patterns within sensory data collected from various environments.
However, they frequently face issues like dataset bias, overfitting,
and a lack of interpretability. Addressing these challenges is crucial
for gaining a deeper understanding of odor dispersion patterns and
making more rational decisions, which could significantly improve the
effectiveness of OSL systems.
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 data mining, AI training, and similar technologies. 
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Fig. 1. The knowledge-driven paradigm for robotic odor source localization, including an interactive environment, an OSL agent with recall and reasoning abilities, and an
independent memory module. The OSL agent continuously processes sensory inputs from the environment, queries and updates experiences from the memory module, and makes
informed decisions to navigate toward the odor source.
Drawing inspiration from the profound capabilities of human cog-
nition, we explore the core principles that underlie effective odor
localization and raise a pivotal distinction: traditional OSL methods
are fundamentally data-driven, whereas human olfactory behaviors are
knowledge-driven [29]. For instance, when faced with a complex odor
plume in a turbulent environment, humans can rely on contextual un-
derstanding and reasoning to navigate toward the source. Conversely,
data-driven methods rely heavily on a large quantity of similar data to
fit these scenarios, which limits their ability to generalize across diverse
conditions. Additionally, collecting and annotating large datasets for
training OSL models is labor-intensive and costly.

The knowledge-driven approach has emerged as a promising al-
ternative to traditional methods in recent years. Unlike data-driven
models that rely solely on large datasets, knowledge-driven models
incorporate contextual understanding, reasoning, and decision-making
capabilities similar to human cognition. This approach is particularly
powerful in scenarios where understanding and interpreting complex
environments is crucial. Large Language Models (LLMs), which have
demonstrated exceptional abilities in various domains, embody this
knowledge-driven paradigm [30,31]. LLMs leverage vast amounts of
pre-existing knowledge, enabling them to generalize better across di-
verse scenarios and make informed decisions with limited contextual
data [32,33]. Recent advancements in LLMs with emergent abilities
offer an ideal embodiment of human knowledge, providing valuable
insights toward addressing the challenges of OSL. LLMs possess ex-
ceptional human-level abilities and show strong performance in areas
such as robotics manipulation [34], multi-modal understanding [35],
and lifelong skill learning [36]. However, like humans need practice
to master complex tasks, LLMs also require experience and guidance to
perform effectively in specific applications.

To leverage the potential of LLMs for robotic OSL, we adapt a novel
framework that integrates these models into a knowledge-driven ap-
proach [32]. This framework, illustrated in Fig. 1, incorporates several
key components: a sensors module, an interactive environment, an
OSL agent with a reasoning module, and a memory module to store
and recall experiences. The reasoning module uses the LLM to query
stored experiences from the memory module and apply common-sense
knowledge to make informed decisions based on current scenarios.
This process involves continuous evolution, where the agent observes
2 
the environment, queries, and updates experiences from memory, and
makes decisions.

Our research presents a novel framework for robotic OSL that
leverages the capabilities of LLMs. To the best of our knowledge, we
are the first to work to integrate LLM with robotic OSL problems.
This knowledge-driven approach overcomes the limitations of tradi-
tional methods by integrating reasoning, contextual understanding, and
scenario interpretation into the decision-making process. We compare
the performance of our LLM-based framework with Deep Q-Networks
(DQNs), a popular RL method [37]. Both simulation and real-world
experiment results demonstrate that the LLM-based approach not only
outperforms DQNs in terms of accuracy and efficiency but also exhibits
superior generalization across different environments.

The contributions of our article are summarized as follows:

1. We introduce a knowledge-driven framework that leverages
LLMs for robotic OSL, emphasizing the advantages of integrat-
ing reasoning, contextual understanding, and decision-making
processes.

2. We validate the proposed OSL framework under realistic condi-
tions by collecting real-world plume data using a wind tunnel
and Particle Image Velocimetry (PIV) system.

3. We compare the performance of the LLM-based OSL framework
with traditional DQN methods in both simulated and real-world
search environments, demonstrating the superior adaptability
and efficiency of the LLM-based approach.

2. Related works

2.1. Robotic Odor Source Localization (OSL)

2.1.1. Bio-inspired methods
Bio-inspired methods for robotic OSL draw inspiration from the nat-

ural world, particularly from the behaviors and mechanisms employed
by various organisms to locate odor sources. These methods have been
adapted into algorithms and systems to enhance the efficiency and
adaptability of robots in tasks such as detecting and localizing chemical
compounds or gases in the air, which is crucial for applications such as
environmental monitoring, search and rescue operations, and detecting
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gas leaks or hazardous substances. One approach involves mimicking
he adaptability of insect brains to control a robot’s movement based

on sensory feedback, as demonstrated by a brain–machine hybrid sys-
tem that adjusts the robot’s velocity in response to neural activities
escending from an insect’s brain [38]. Similarly, the flight patterns
f moths have inspired algorithms that trigger motion in robots upon

detecting gas, integrating a repulsion function to navigate around
obstacles [39]. The behavior of the adult male silk moth, particularly
ts method of modulating speed based on odor detection frequency,
as been used to develop a robust moth-inspired algorithm for indoor
nd outdoor odor source localization [40]. This approach leverages

the moths’ ability to use smell and wind direction to locate mates,
showing excellent performance in various environmental complexi-
ties [41,42]. Other organisms, such as flatworms, have also inspired
bio-inspired OSL methods. Flatworms’ kinesis response and tropotaxis
behavior, which do not require wind direction or odor concentration
information, have led to a bionic odor source localization algorithm
that improves search efficiency and environmental adaptability [43].
Additionally, a method mimicking male moths tracking pheromone
plumes uses simulations of their sensory, behavior, and control sys-
tems. Despite advancements, these models still fall short of natural
efficiency, prompting optimization through genetic algorithms [44].
Incorporating biological components, such as moth antennae, into fly-
ing robots has provided rapid response times and high specificity and
sensitivity in chemical detection due to gene editing advances [45].
Additionally, the collective behavior observed in nature has led to the
development of swarm intelligence algorithms for multi-robot systems,
nhancing parallelism, scalability, and robustness in odor source lo-
alization tasks [46]. Particle Swarm Optimization (PSO), based on
he social behavior of birds and fish, has also been adapted for odor

localization, proving effective in real-world scenarios [47–49]. Cross-
ind Levy Walks, spiraling, and upwind surges, inspired by animal

earch patterns, form a robust 3D algorithm for odor localization,
utperforming 2D methods [50]. Additionally, biohybrid systems com-

bining living materials with synthetic devices have led to robots with
insect antennae for odor sensing, allowing autonomous navigation and
obstacle avoidance [51].

However, bio-inspired methods face limitations. The complexity
of accurately mimicking biological systems can lead to challenges in
earning and implementing such methods effectively. Moreover, the
eliance on specific sensor types, such as metal oxide semiconductor
MOS) sensors, can limit the sensing capacity of OSL robots, making it
ifficult to match the performance of their biological counterparts [52].

2.1.2. Engineering-based methods
Robotic OSL employs various engineering-based methods to enable

robots to detect and locate the sources of odors. These methods range
from algorithmic approaches to the utilization of unmanned aerial
vehicles (UAVs) for enhanced mobility and efficiency. One primary
algorithmic approach involves the use of Independent Posteriors (IP)
and Dempster–Shafer (DS) theory algorithms, which rely on occu-
ancy grid mapping to estimate the probability of a location being
n odor source. The IP algorithm has shown superior performance in
inimizing false source attributions in turbulent fluid flow environ-
ents [53]. For scenarios where constructing a dispersion model of the

odor plume is impractical due to complex geometries, a combination
of Infotaxis and Dijkstra algorithms has been proposed. This approach
dynamically adjusts the robot’s focus between exploration and ex-
ploitation, significantly improving success rates and reducing search
times [54]. In the realm of UAVs, a multi-UAV collaboration based on
 collaborative particle filter algorithm and an adaptive path planning

algorithm has been developed. This method aims to quickly locate odor
sources with minimal resource consumption, demonstrating superior
erformance in simulation platforms [52]. Olfactory quadruped robots

equipped with various sensors have been developed for complex envi-
ronment navigation and odor source localization, offering adaptability
3 
and eco-friendliness [55]. These diverse engineering-based methods
highlight the interdisciplinary efforts to improve robotic OSL, lever-
aging algorithmic precision, UAV mobility, and bio-inspired strategies
to address the challenges of locating odor sources in complex environ-
ments. Engineering-based methods, such as those employing UAVs for
OSL, benefit from flexible deployment and controllable movement in
3D space, offering precise source estimation and efficient navigation
through collaborative algorithms and adaptive path planning [27].
These methods often rely on well-defined computational models and
algorithms, like Fuzzy inference and Markov decision processes, to
optimize search strategies in turbulent flow environments. While these
approaches provide clear frameworks for problem-solving and opti-
mization, they may lack the inherent adaptability and robustness to
environmental variability that bio-inspired methods offer.

In summary, bio-inspired methods for robotic OSL offer adaptabil-
ity, efficiency, and robustness by leveraging natural strategies, but they
may struggle with the complexity of certain algorithms and sensor
imitations. Conversely, engineering-based methods provide precise,
ptimized solutions through computational models but may lack the
daptability to environmental changes seen in bio-inspired approaches.

2.1.3. Learning-based methods
Learning-based methods for robotic OSL have significantly ad-

anced, leveraging deep learning (DL) and reinforcement learning (RL)
o enhance robots’ ability to detect and locate odor sources efficiently.
L has emerged as a promising approach for robotic OSL, offering

he potential to navigate and identify odor sources with high accu-
acy. Deep learning methods, particularly, have been instrumental in
eveloping algorithms that enable mobile robots to navigate toward
n odor source without predefined search strategies. Two notable deep
eural networks (DNNs), feedforward neural networks (FNN) and long
hort-term memory neural networks (LSTM), have been developed to
alculate robot heading commands based on sensor readings, showing
romising results in real-world experiments [56]. Additionally, a deep
earning-based odor compass has been designed, incorporating a deep
earning-based odor attention (DL-OA) model with a separated spatial–
emporal attention-based encoder–decoder structure for end-to-end
dor source direction estimation (OSDE), demonstrating significant
ccuracy in indoor environments [57]. Another approach involves a

convolutional neural network (CNN) and LSTM modules to improve
the accuracy and generalization ability of odor-source direction esti-
mation, further enhancing the performance of OSL robots [58]. On
the reinforcement learning front, a multi-continuous-output Takagi–
Sugeno–Kang fuzzy system tuned with reinforcement learning has been
roposed. This system, designed for dynamic outdoor environments,
elies on the robot’s observations to guide it toward the odor source,

showing comparable success rates and higher efficiency than manually
tuned systems [59]. Moreover, the integration of probabilistic models,
such as probabilistic gas-hit maps, into the robotic systems provides
a higher level of abstraction to model the time-dependent nature of
gas dispersion, aiding in source localization in complex indoor environ-
ments [60]. The integration of convolutional neural network (CNN) and
LSTM modules into the odor compass design further improves accuracy
and generalization ability in OSL tasks [61]. Deep learning frameworks
also excel in handling sparse and unreliable spatio-temporal chemi-
cal sensor data, offering regularized solutions that accurately predict
gas leak sources by conforming to the spatio-temporal structure of
gas concentration distribution [62] . These advancements underscore
the potential of AI-based methods in enhancing the efficiency and
reliability of robotic odor source localization.

However, several challenges and limitations are associated with its
application, which necessitates further research and development to ad-
dress. One significant challenge is the complexity of environmental fac-
ors, such as signal noise, obstacles, and sparse fingerprints, which can
inder the modeling and localization performance of robots in indoor

environments. To overcome this, a novel deep learning framework with
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a localization attention module and a multi-faceted localization module
integrating LSTM and GRU has been proposed, showing efficiency in
capturing dynamic spatial and temporal features [63]. Another lim-
tation is the difficulty in learning complex search strategies, such
s Bayesian-inference methods, through DL. Experiments have shown
hat while DL models can imitate simpler moth-inspired methods, they
truggle with more complex strategies [56]. Addressing this requires
he development of more sophisticated neural network architectures or
raining methodologies.

In summary, addressing the challenges and limitations of using deep
learning for robotic OSL requires a multifaceted approach, including
the development of advanced DL frameworks, improved sensor tech-
nologies, sophisticated training methodologies, and the integration of
biological insights into algorithm design [41].

2.2. LLM-based agent

2.2.1. Large language models
Large language models (LLMs) have significantly transformed the

andscape of natural language processing (NLP), pushing the bound-
ries of language understanding and generation to new heights. These
odels, with their vast amount of parameters frequently reaching

he hundreds of billions, are trained on extensive text datasets. This
n-depth training enables them to grasp natural language and per-

form various intricate tasks, primarily focusing on text generation
and comprehension. Notable examples of LLMs include GPT-3 [64],
PaLM [65], LLaMA [66], and GPT-4 [67]. Constructed using the trans-
former architecture, LLMs have demonstrated significant advancements
in performance compared to earlier versions due to utilizing extensive
ata and complex training methods. LLMs stand out from smaller lan-
uage models due to their emergent capabilities, including in-context
earning [64], following instructions [68,69], and reasoning with chain-

of-thought [70]. The creation and implementation of these models
have achieved state-of-the-art performance across numerous NLP tasks,
ntroducing a paradigm shift in how these tasks are approached. They

leverage pre-training on large datasets followed by fine-tuning for
specific applications [71]. LLMs’ capacity to produce coherent and
ontextually appropriate text makes them extremely useful for various
pplications in educational technology, computational social science,

and beyond. These models have demonstrated exceptional capabili-
ies in generating text, understanding complex language nuances, and
erforming tasks with minimal input through zero-shot or one-shot

learning settings [72]. The evolution of LLMs, highlighted by their
bility to perform tasks zero-shot without specific training data, is
ransforming computational social science by serving as zero-shot data
nnotators and bootstrapping creative generation tasks, showcasing
heir versatility and broad applicability [73].

Recent advancements in LLMs have showcased human-like intelli-
gence and hold the potential to propel us closer to the realm of Artificial
General Intelligence (AGI) [73]. OpenAI’s pursuit of LLMs has led to
ignificant milestones such as ChatGPT [74] and GPT-4 [67]. These
ilestones signify notable advancements in LLMs’ capabilities, particu-

arly in natural language understanding and generation. The continuous
evelopment of LLMs, including refining architectures and training
trategies, promises further advancements in their capabilities and
pplications. These models have become essential tools in various do-
ains, driving innovation and enhancing the ability to tackle complex
roblems through advanced language understanding and generation.

2.2.2. Robotic Transformer
The concept of a ‘‘Robotic Transformer’’ encompasses a range of

innovative approaches in robotics, focusing on enhancing the capabili-
ies of robots through advanced machine learning models, particularly

transformers, for tasks such as 3D object manipulation, robotic grasp-
ing, and skill assessment in robot-assisted activities. In the realm of 3D
bject manipulation, the Robotic View Transformer (RVT) represents
 s

4 
a significant advancement, offering a scalable and accurate multi-view
transformer model that outperforms existing methods in both training
speed and inference speed, demonstrating its effectiveness across a
variety of real-world tasks with minimal demonstrations required [75].
Similarly, the Robotics Transformer model emphasizes the importance
f transferring knowledge from large, diverse datasets to solve spe-

cific downstream tasks, showcasing the potential for generalization in
robotics through open-ended task-agnostic training [76]. For robotic
grasping, extending transformer models to 6-Degree-of-Freedom (6-
DoF) grasping has shown promising results, with methods that effi-
ciently learn both global and local features, significantly improving suc-
ess rates in challenging datasets [77]. Additionally, Act3D introduces
 manipulation policy transformer that excels in 3D detection for end-

effector pose prediction, setting new benchmarks in manipulation tasks
hrough its innovative use of 3D feature clouds and adaptive spatial

computation [78]. These transformer-based approaches demonstrate
significant advancements in robotic manipulation tasks, showcasing
superior performance, scalability, and generalization abilities.

2.2.3. LLM-based agent in robotic tasks
Current advancements in Large Language Model (LLM)-based agent

echnology have significantly enhanced the capabilities of robots in
nderstanding and executing complex tasks. These advancements lever-
ge the vast knowledge encoded in LLMs, extending beyond simple
rompt engineering to enable more nuanced and situationally aware
nteractions between robots and their environments. A cognitive-agent
pproach has been developed to mitigate the limitations of prompt
ngineering, allowing robots to acquire new task knowledge that aligns
ith their native language capabilities, embodiment, environment, and
ser preferences. This approach has demonstrated the ability of robots
o achieve high task completion rates in one-shot learning scenarios,
ith and without human oversight [79].

Moreover, the integration of LLMs with reinforcement learning has
led to the development of mediator models that optimize the cost
nd frequency of interactions between agents and LLMs. These models

enable agents to consult LLMs only when necessary, significantly reduc-
ing interaction costs and improving performance in complex decision-
making tasks [80]. LLMs have shown significant promise in enhancing
robotic task learning, particularly by providing a rich knowledge source
that can be tapped into for novel task acquisition. One promising ap-
proach leverages LLMs for object goal navigation in a zero-shot manner,
where an embodied agent navigates to a target object described in
natural language within an unexplored environment. This method has
demonstrated substantial improvements in success rates over current
baselines [81], utilizing the implicit knowledge of LLMs about the
emantic context of the environment and mapping it into sequential
nputs for robot motion planning. Furthermore, LLMs integrated with
isual and natural language understanding have been explored for in-
remental decision-making in real-world environments, such as Vision

and Language Navigation (VLN), where an embodied agent follows
navigation instructions grounded in real-world observations [82].

The concept of using LLMs as a ’robotic brain’ to unify memory and
ontrol within an embodied AI system has been introduced, demon-
trating the potential of LLMs in active exploration and embodied
uestion answering tasks [83]. This approach not only streamlines the

interaction between perception, planning, and control but also signif-
icantly boosts the efficiency and accuracy of robotic tasks. A closed-
loop technique, AdaPlanner, has been proposed to allow LLM agents
to adaptively refine their plans in response to environmental feed-
ack, showing improved performance in sequential decision-making
asks [84].

In the context of memory utilization, Retrieval-Augmented Genera-
tion (RAG) has emerged as a highly relevant approach that combines re-
trieval mechanisms with LLM generation tasks. RAG typically retrieves
xternal documents or passages to directly augment LLM outputs in a
ingle-stage process. RAG has demonstrated advantages in enhancing



K.R. Mahmud et al.

t

t
s
p
a
m

w
o
c
t

a
s
a

e

f
s
t

s

i

p
r
c

m
a

t

𝑦

d

a

i
c

Robotics and Autonomous Systems 186 (2025) 104915 
knowledge integration, processing complex queries, and improving
retrieval efficiency [85]. Its scalability and adaptability to dynamic
environments, facilitated by mechanisms such as topology-aware re-
rieval and relevant information gain, make it a strong theoretical

foundation for structured memory-driven tasks [86]. However, RAG’s
dependency on external data sources and the challenges of filtering
retrieved information demonstrate the importance for domain-specific
adjustments to maximize its effectiveness [87].

LLM-based agents demonstrate exceptional proficiency in conversa-
ional engagement and adherence to instructions across various down-
tream tasks, outperforming rule-based systems that require explicit
rogramming for each specific task [88]. These agents can process
nd generate natural language instructions, adapt to new tasks with
inimal data, and engage in complex decision-making processes. How-

ever, LLMs lack the inherent ability to engage with and comprehend
the complexities of odor source localization as effectively as humans.
Robotic OSL systems require active interaction with and understanding
of their environment.

To bridge this gap, we propose a novel knowledge-driven frame-
ork for robotic OSL that enables LLMs to comprehend and navigate
dor source localization tasks by incorporating human knowledge. By
ombining the semantic understanding and decision-making capabili-
ies of LLMs with the sensory data from traditional OSL methods, robots

could achieve higher levels of accuracy and efficiency in detecting and
navigating toward odor sources. The integration of LLMs into robotic
OSL could revolutionize the field by providing a more intuitive and flex-
ible method for robots to understand and navigate their environment.
This approach has the potential to lead to significant improvements
in safety and rescue operations, pollution control, and environmental
monitoring, addressing the urgent need for efficient, safe, and accurate
localization of hazardous chemical gas leaks.

3. Methodology

3.1. Problem statement

The primary objective of Robotic OSL is to develop a mobile robotic
system that can detect and navigate toward an unknown odor source
within a specific environment. This task involves determining a se-
quence of actions that will effectively guide the robot to the odor
source. Mathematically, we can represent this process as follows:

𝑎 = 𝐹 (𝑜, 𝑠) (1)

where 𝑎 denotes the robot’s action, 𝐹 represents the navigation algo-
rithm, 𝑜 is the past observation, and 𝑠 refers to the current observation.
The main challenge lies in finding the optimal function 𝐹 that generates
 sequence of actions 𝑎 to navigate the robot toward the odor source
uccessfully. This function must effectively leverage past experiences 𝑜
nd real-time sensory data 𝑠 to make informed decisions that lead the

robot to the odor source.
To address this challenge, we propose a knowledge-driven paradigm

that leverages the capabilities of Large Language Models (LLMs) to
nhance the robot’s navigation and decision-making processes. Our

approach, illustrated in Fig. 1, aims to utilize the generalization ability
of LLMs, along with their contextual understanding of environmental
dynamics, to develop a more robust and adaptable function 𝐹 . This
unction integrates past experiences stored in memory with real-time
ensory inputs to guide the robot in efficiently locating odor sources
hrough advanced navigation strategies.

3.1.1. The search area and plume field
The search area is defined as a two-dimensional search space that

contains an odor source, the location of which is unknown to the
robot. This study focuses on navigating within this space to locate the
unknown odor source. The odor plume is dispersed within this search

area, creating a plume field characterized by varying concentrations

5 
of odor. These concentrations are influenced by environmental factors
uch as wind and obstacles, making the search process more complex.

In this study, the plume field was generated by using a wind
tunnel and a Particle Image Velocimetry (PIV) system, as illustrated
n Fig. 2(a). The PIV system utilized green lasers to identify plume

positions and velocities, enabling precise measurements of the odor
lume distribution. These measurements are crucial for identifying the
eal-world plume distribution. The data collection process involved
ontinuous emission of odor plumes (mineral oil) [89] into the wind

tunnel through a nozzle, as shown in Fig. 2(b). The PIV system was
employed to record plume positions and velocities in the downstream
area, which had dimensions of 2.2 × 5.0 m2 (𝑥×𝑦). The resolution of PIV

easurements was 220 by 500, providing detailed spatial information
bout the plume dynamics [89]. For this study, the search area extends

along the 𝑥-axis from 0 to 200 resolution units and the 𝑦-axis from −110
to +110 resolution units, corresponding to approximately 2.2 × 2.0 m2.
The odor source is located at positions x=2 and y=12, as illustrated in
Fig. 2(c).

To derive the odor concentration at each point in the plume, we
used a mathematical model that calculates concentration based on
he velocity data obtained from the Particle Image Velocimetry (PIV)

system, Fig. 2(c). We calculated the concentration at each point in the
plume field using the formula:

𝑐 =
√

𝑢2 + 𝑣2 (2)

where 𝑢 and 𝑣 represent the velocity components along the 𝑥-axis and
-axis, respectively, and 𝑐 represents the odor concentration at specific

position. This approach assumes that higher velocities correspond to
denser plume areas, thus indicating higher concentrations of the odor.
This calculated concentration data and the velocity plots provided by
the PIV form the basis for creating a detailed concentration map of the
plume field. This map is crucial for simulating realistic odor dispersion
patterns in our experimental setup.

The detailed setup and measurement process ensure high-quality
ata collection, which is essential for conducting realistic simulations

and evaluating the effectiveness of the proposed OSL framework. This
dataset is crucial for testing and validating the effectiveness of the OSL
algorithms under real-world conditions, ensuring that the developed
algorithms are robust and applicable in practical scenarios.

3.1.2. The robotic agent
The robotic agent is designed to detect chemical compounds in the

ir and efficiently navigate toward the odor source. The key sensors
integrated into the robotic agent include chemical sensors for detecting
the presence and concentration of odors and anemometers for measur-
ng wind direction and speed. These sensors enable the robot to gather
omprehensive environmental data, essential for effective navigation

toward the odor source.
As detailed in Table 1, the robot has an original speed 𝜈, starting

with a robot heading command of zero degrees. Only speed and head-
ing commands are required to control a robot in a 2D plane. The robot
employs an adaptive speed mechanism to calculate its speed command
(𝜈𝑐) that adjusts its speed based on the concentration of the detected
odor. The adaptive speed mechanism adjusts the robot speed command
using the following formula:
𝛽 = max(0.1, 1 − 𝑐𝑛𝑜𝑟𝑚)

𝜈𝑐 = 𝜈 × 𝛽 , (3)

where 𝛽 is the speed factor, calculated based on the normalized odor
concentration 𝑐𝑛𝑜𝑟𝑚 at the robot’s position and eight adjacent points.
𝜈 represents the robot’s original speed, and 𝜈𝑐 is the robot speed
command. This adaptive mechanism ensures that the robot reduces
its speed as it nears the odor source for better exploitation accuracy
while preventing the speed from reaching zero to maintain constant

movement.



K.R. Mahmud et al. Robotics and Autonomous Systems 186 (2025) 104915 
Fig. 2. (a) Experiment setup. (b) The nozzle continuously releases odor plumes into the wind tunnel. Green lasers help the PIV identify plume positions and velocities. (c) Diagram
of the search area, illustrating the plume field and the locations of the odor source. The color scale ranges from deep purple (low concentration, 0) to bright yellow (high
concentration, 16.4), depicting the intensity of the odor plume across the search area. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Table 1
Definition of Parameters.

Parameters Definitions

𝛼 Wind Direction
𝛽 Speed Factor
𝜈 Original Speed
𝜈𝑐 Robot Speed Command
𝜙𝑐 Robot Heading Command
𝑐𝑛𝑜𝑟𝑚 Normalized Concentration

We determine the robot’s heading command (𝜙𝑐) by two search
behaviors inspired by the mate-seeking behaviors of male moths, in-
cluding surge and casting behaviors [90]. Surge behavior is activated
when the moth is inside the plume, which commands the moth to move
upwind; Casting behavior is activated when the moth moves out of the
plume area, and the moth will move across the wind to increase the
chance of re-detecting plumes. By iterating these two search behaviors,
a male moth can find a female moth from a considerable distance.

In this work, we convert these search behaviors into two robot
action commands, denoted as 0 and 1. Action 0 represents surge
behavior, where the robot moves against the wind direction, and action
1 represents casting behavior, where the robot moves across the wind
direction. During the search process, the LLM agent decides which
action to perform based on the current sensor reading and past sensor
observations. If the LLM agent selects action 0, it moves upwind by
adding 180 degrees to the current wind direction, simulating the moth’s
direct approach toward the odor source. Conversely, if action 1 is
selected, it moves across the wind by adding 90 degrees to the wind
direction. Mathematically, we calculated the robot heading command
as follows:

𝜙𝑐 =

{

𝛼 + 180 if 𝑎𝑐 𝑡𝑖𝑜𝑛 = 0;
𝛼 + 90 if 𝑎𝑐 𝑡𝑖𝑜𝑛 = 1, (4)

This method ensures that the robot can adeptly adjust its trajectory in
response to changes in wind direction, effectively using bio-inspired
maneuvers to locate the odor source. It is important to note that the key
difference between the moth-inspired method and our approach is that
we use LLM to decide whether the robot should surge or cast, whereas
the moth-inspired method makes decisions based on the current sensor
reading. The LLM makes the decisions based not only on the current
sensor reading but also on past sensory observations.

The robot updates its position once the heading command is deter-
mined based on the obtained heading command. As illustrated in Fig. 3,
the robot operates within a global frame (𝑥𝑜𝑦), with its localized adjust-
ments made relative to its body frame (𝑥𝑟𝑜𝑦𝑟). This updating process
is determined mathematically in Eq. (5), which utilizes trigonometric
functions to determine the robot’s new position:
𝑥𝑘+1 = 𝑥𝑘 + (𝜈𝑘𝑐 × cos(𝜙𝑘

𝑐 ))
𝑘+1 𝑘 𝑘 𝑘 (5)

𝑦 = 𝑦 + (𝜈𝑐 × sin(𝜙𝑐 )).
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Here, 𝜙𝑘
𝑐 is the robot’s heading command at the 𝑘th time step, cal-

culated by Eq. (4). The variables (𝑥𝑘, 𝑦𝑘) denote the robot’s current
coordinates at the 𝑘th time step within the plume field. The adaptive
speed, 𝜈𝑘𝑐 , is determined using Eq. (3) based on the odor concentration
detected at the 𝑘th time step. After executing an action, the robot’s
updated coordinates (𝑥𝑘+1, 𝑦𝑘+1) represent its new position at time step
𝑘 + 1.

The primary goal of the robotic agent is to locate the odor source
within the defined search area. The robot starts from a random initial
position, denoted by (𝑥0, 𝑦0), and uses its sensors to detect and follow
the odor plume. The robot’s task involves making informed decisions
about its movement direction and distance based on the odor con-
centration and wind direction at its current location. Upon detecting
the odor concentration at its current position, the robot can choose
between moving against the wind or across the wind direction. The
chosen action and the wind direction determine the robot’s heading
command using Eq. (4).

3.2. Proposed knowledge-driven OSL framework

In this section, we present the knowledge-driven framework for
robotic OSL, which integrates LLMs to enhance robots’ decision-making
and navigational capabilities. As depicted in Fig. 4, the framework com-
prises three interconnected modules: the Environment, the Reasoning
module, and the Memory module.

The Environment module acts as the primary interface between the
robot and its surroundings and captures real-time sensory data. The
Reasoning module is the core of the decision-making process. It consists
of several interdependent components that work together to process
the sensory data and generate actionable commands for the robot. The
Memory Module stores a diverse array of past experiences, which the
Prompts Generator can recall when necessary. This module ensures that
the decision-making process is not solely reliant on current sensory
inputs but also benefits from past experiences, allowing the robot to
make more informed and nuanced decisions. The following subsections
explain the reasoning and memory modules in detail.

The reflection module is designed to evaluate and correct individ-
ual actions. For our robotic odor source localization (OSL) task, it
is impossible to judge the correctness of each produced action since
the robotic OSL task is a long horizon task, which means the final
result (i.e., successful finding the odor source or fail finding the odor
source) is determined by the accumulation of series of actions. The
impact of single action is less significant to the final result. Thus, we
remove the reflection module for the robotic OSL task to accelerate the
decision-making process.

3.2.1. Reasoning module
The Reasoning module is the core of our knowledge-driven OSL

framework. It uses the LLM to analyze sensory inputs, such as odor con-
centration and wind direction, to make informed navigation
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Fig. 3. Control of a ground mobile robot.
Fig. 4. The framework of our knowledge-driven robotic odor source localization system. It consists of three modules: Environment, Reasoning, and Memory. The Reasoning module
processes sensory inputs, combines scenario descriptions with experiences from the Memory module to generate prompts, and interprets responses from the LLM to make navigation
decisions.
Fig. 5. Reasoning module for robotic odor source localization that utilizes the common-sense knowledge of the LLM and retrieves experiences from the Memory module to make
informed decisions based on the observed scenario.
decisions. The reasoning agent can generate effective search strategies
by combining current scenario descriptions with stored experiences. In
the Reasoning module, we utilize experiences derived from the Memory
module and the contextual understanding of the LLM to make decisions
for the current odor localization scenario. The reasoning procedure
is illustrated in Fig. 5, and includes the following steps: (1) scenario
encoding; (2) experience retrieval; (3) prompt generation; (4) Prompt
Processing; and (5) action decoding.
7 
Scenario Encoding: The reasoning module begins by acquiring the
sensor data of the current environmental scenario into a structured
scenario descriptor, as illustrated in Fig. 6. By utilizing the natural
language, the scenario descriptor transcribes these sensor data into
descriptive text that describes the current scenario of the environment.
This description contains detailed information about the Environment,
such as the robot’s position and odor concentration within the search
area. These descriptions are then fed into the prompt generator and
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Fig. 6. Scenario Descriptor transcribes the current environmental scenario from the sensor data into descriptive text.
Fig. 7. Few-shot experiences where each experience consists of a human-LLM dialogue pair.
used as the keys to retrieve the relevant few-shot experiences from the
Memory module.

Experience Retrieval: In this step, the current scenario is trans-
formed into a vector representation using an embedding model. This
vector, derived from a detailed natural language description of the
current environment (including factors like robot position and odor
concentration), serves as a query to access our Memory module. By
leveraging cosine similarity [91], this query vector is compared against
the embeddings of past scenarios stored in the database. The system
retrieves the top 𝑘 most similar entries, representing past experiences
with contexts closely related to the current scenario. These entries, or
‘‘ few-shot experiences’’, as illustrated in Fig. 7, are then integrated
with the present scenario description to assist in the reasoning process.
This approach ensures that the robot’s decision-making is informed by
historical data, improving its responses to new yet similar conditions.

Prompt Generation: This stage involves constructing comprehen-
sive prompts that are pivotal for the LLM’s reasoning process. The
8 
prompts are generated by combining system prompts, textual scene
descriptions, and relevant past experiences drawn from few-shot expe-
riences. The system prompts summarize the task, detailing the expected
inputs and outputs and specific constraints governing the reasoning
process. These prompts, illustrated in Fig. 8, tailored specifically for
each decision-making instance, capture the specific details of the cur-
rent situation, enabling the LLM to apply its reasoning capabilities
effectively to deduce the most appropriate navigational actions.

Prompt Processing: The complexity and variability of odor local-
ization tasks demand a detailed reasoning process for accurate decision-
making. To address this, we utilize Chain-of-Thought (CoT) prompting
techniques [70], which guide the LLM to articulate its reasoning step-
by-step, helping to clarify the decision-making path and reduce poten-
tial inaccuracies. By structuring the LLM’s responses in this manner, we
ensure that each decision is based on a logical progression of thought
appropriate for the variable and complex scenarios encountered in odor
localization tasks.
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Fig. 8. Prompts generator consists of system prompts, textual description, and few-shot experiences.
Action Decoding: The output from the LLM is interpreted by the
action decoder within the reasoning module, translating the model’s
responses into specific actions for the robotic agent. The decoder is
critical in converting high-level decision outcomes into specific naviga-
tional commands that the robot executes, facilitating interaction with
the Environment. It creates a robust closed-loop system that refines the
robot’s navigational abilities through a cycle of continuous feedback
and learning, leveraging both new experiences and past experiences
stored in the Memory module. Fig. 9 illustrates the functionality of
the reasoning module, showing how environmental data is transformed
into a decision-making prompt for the LLM, and subsequently, how the
LLM’s output is decoded into actions for the robot. Detailed information
on the construction and design of these prompts can be found in
Appendices A.1 and A.2.

3.2.2. Memory module
The memory module of our knowledge-driven OSL framework is

crucial for the robotic agent’s ability to reason effectively in com-
plex odor source localization tasks. It archives extensive records of
past scenarios, including scene descriptions and corresponding reason-
ing processes, which are instrumental in informed decision-making in
new situations. When the robotic agent faces a new scenario, it re-
trieves relevant past experiences to aid decision-making. This retrieval
process involves transforming the current scenario description into a
vector. This vector acts as a key, enabling the agent to search through
the memory module for scenarios with similar conditions and their
corresponding successful strategies.

To optimize this retrieval process, our framework employs pre-
filtering technique based on cosine similarity. While providing as many
recordings as possible directly in the LLM prompt and leaving the LLM
9 
to select the best 𝑛 candidates may allow the LLM to make much
more nuanced choices, adopting this in our framework could introduce
significant challenges for the decision-making process of LLM agent,
discussed below:

• Real-time Decision-Making: Adding an extra step for the LLM
to dynamically select relevant memories would increase com-
putational overhead, slow down the decision-making process,
and compromise performance in time-sensitive scenarios. The
proposed pre-filtering technique significantly enhances perfor-
mance by reducing the complexity of input processing, thereby
minimizing inference time.

• Finite Token Limits: LLMs have a finite token limit, which poses
significant challenges to process extensive contexts. Providing all
memory recordings directly to the LLM could exceed these limits
as the number of experiences grows, which can lead to the trun-
cation of valuable data. By pre-filtering using cosine similarity,
we ensure that only the most relevant and manageable subset of
experiences is included within the token limit, thereby preserving
critical information.

• Scaling Memory Module: Due to token limits and computational
overhead, LLMs face significant challenges in managing large
numbers of experiences. As the memory module grows, providing
all recordings directly to the LLM becomes increasingly unfeasi-
ble. A pre-filtering mechanism is essential to ensure scalability
while maintaining decision quality. This mechanism allows LLMs
to efficiently manage and retrieve relevant information without
overwhelming computational resources.

By utilizing pre-filtered past experiences, the robot applies correct
strategies to current environmental scenarios, ensuring a higher like-
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Fig. 9. The scenario description provided by the scenario descriptor and the decision decoder determines the action based on the LLM’s reasoning output for robotic odor source
localization.
lihood of successful navigation. This method of leveraging past expe-
riences enables the robot to maintain consistent and reliable decision-
making, enhancing its operational efficiency without constant updates
to the memory database. This static approach avoids the complex-
ities and potential errors associated with continuous learning mod-
els, focusing instead on applying well-established knowledge to new
situations.

4. Experiments and results

This section presents our study’s experimental setup and results on
robotic odor source localization (OSL). We designed the experiments
to evaluate the performance of the proposed knowledge-driven OSL
framework under different configurations and conditions. We con-
ducted an ablation study, comparing results across various scenarios,
including different odor source locations and varying levels of memory
utilization. Additionally, we compared our approach to a reinforcement
learning method using Deep Q-Networks (DQN).

4.1. Experimental setup

We evaluated the performance of our knowledge-driven OSL frame-
work by conducting experiments in a simulated environment, described
in Section 3.1.1, which incorporates real-world plume data. We de-
signed the environment to replicate the plume behavior observed in
the wind tunnel experiments, ensuring that the search area and odor
dispersion closely mimic actual conditions.

We conducted our experiments using the search area configuration
detailed in Section 3.1.1, following the setup of our simulated environ-
ment. Initially, we used the original odor source location at a specific
point within the search area, where the nozzle continuously released
odor plumes into the wind tunnel. To further assess the system’s ro-
bustness, we tested the framework by flipping the odor source location
along the 𝑥-axis, as shown in Fig. 10. For each experimental setting, we
conducted 10 trials to capture the variability and ensure the robustness
of our results. The performance metrics for evaluation included Success
Rate (SR), Averaged Travel Distance (TD), and Averaged Search Time
(ST). The success rate measures the proportion of trials where the robot
successfully located the odor source. We define the Averaged Travel
10 
Distance and the Averaged Search Time as the mean values of total
distance traveled and time taken across the trials.

4.2. LLM-based OSL agent configuration

We tested the robotic agent’s navigation strategy under three dif-
ferent configurations: (i) Adaptive-Hint, where the robot adjusts its
speed based on odor concentration and receives directional hints; (ii)
Adaptive-No Hint, where the robot adjusts its speed but does not
receive any hints; and (iii) Hint Only, where the robot receives hints
about movement direction but does not adjust its speed. To assess
the impact of prior experiences on performance, we varied memory
utilization across three levels: 0-shot, 3-shot, and 5-shot experiences
where these experience levels refer to the number of relevant past
scenarios retrieved from the memory module to inform the robot’s
decision-making process. In the 0-shot experience, the robot makes
decisions based solely on the current scenario without using any past
experiences. In the 3-shot experience, the robot retrieves three past
experiences to guide its current decision, while in the 5-shot experience,
the robot retrieves five, providing more context to inform its actions.

4.3. DQN-based OSL agent

In our study, to benchmark the performance of our knowledge-
driven OSL framework, we implemented a Deep Q-Network (DQN)
model based on the architecture and methodology outlined in [37]. The
DQN maps the robot’s sensor input states to output actions that guide
the robot’s navigation toward the odor source.

We chose DQN, a classic deep reinforcement learning algorithm
with a discrete action space, as a baseline to compare our framework’s
performance with a learning-based algorithm. The purpose of this com-
parison is not to design a state-of-the-art reinforcement learning agent
but to highlight the generalization capability of our proposed method.
The LLM in our framework also outputs discrete actions, including
moving against the wind or crosswind. Therefore, for a meaningful
comparison, we selected DQN as it aligns with the discrete action space
of the LLM-driven framework, which also outputs discrete actions.



K.R. Mahmud et al. Robotics and Autonomous Systems 186 (2025) 104915 
Fig. 10. (a) Diagram of the search area, illustrating the plume field and the original location of the odor source. (b) Diagram of the search area after flipping the search area
and odor source location along the 𝑥-axis.
The DQN implemented in our project is a fully connected neural
network designed to process input states—comprising the robot’s posi-
tion, velocity components, and concentration of the odor—and output
actions that determine the robot’s heading direction. The network
architecture, illustrated in Fig. 11, consists of the following:

Input Layer: The input to the DQN is a state vector that includes
the robot’s current 𝑥 and 𝑦 positions, the velocity components (u
and v), and the odor concentration at the robot’s location. This state
vector encapsulates the essential environmental information needed for
making navigation decisions.

Hidden Layers: The network includes two fully connected layers
with 128 neurons each, using ReLU (Rectified Linear Unit) activation
functions to introduce non-linearity, allowing the model to capture
complex relationships between the input state and the optimal action.

Output Layer: This layer comprises four neurons, each representing
the Q-value of one of four possible actions: moving left, down, right, or
up. The action with the highest Q-value is selected as the robot’s next
move.

Training DQN Network: We trained the DQN in the same simu-
lated environment used to evaluate our knowledge-driven OSL frame-
work, ensuring a consistent comparison. This environment replicates
the plume behavior observed in wind tunnel experiments, with the
search area defined as a 2.2 × 2.0 meter space. Initially, we fixed the
odor source at a specific location and later flipped its position along
the 𝑥-axis to test the model’s robustness. During each training step,
the DQN receives a state vector that includes the robot’s position (x,
y), velocity components (u, v), and odor concentration. Based on this
input, the network generates Q-values for the four possible actions:
moving left, down, right, or up. The robot then selects and executes
the action with the highest Q-value.

We designed the reward system to encourage the robot to locate
the odor source efficiently. Mathematically, we define the reward 𝑟 as
follows:

𝑟 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

100 if 𝑑 < 𝛿;
−100 if 𝑂 𝐵 or 𝑡 < 𝑡𝑚𝑎𝑥;
−0.1 if 𝑑 𝑖𝑠𝑡(𝑃4, 𝑃1) < 3;
𝑐𝑛𝑜𝑟𝑚 if 𝑐𝑛𝑜𝑟𝑚 > 0 and 𝑑 𝑖𝑠𝑡(𝑃4, 𝑃1) ≥ 3;
0 otherwise,

(6)

where 𝑑 is the distance of the robot agent to the odor source, 𝛿 is
the distance threshold to consider the goal reached, 𝑂 𝐵 indicates that
the robot moves out of bounds, 𝑡 is the current time step, 𝑡𝑚𝑎𝑥 is the
maximum allowed time steps, 𝑃1 and 𝑃4 are the robot’s positions at the
first and fourth most recent steps, 𝑑 𝑖𝑠𝑡(𝑃4, 𝑃1) represents the Euclidean
distance between the positions 𝑃1 and 𝑃4, 𝑐𝑛𝑜𝑟𝑚 is the normalized odor
concentration at the robot position.
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The robot receives a high positive reward, 𝑟 = 100 if it successfully
reaches the odor source, and a negative reward of 𝑟 = −100 if the robot
either moves outside the designated search area (i.e., moves beyond
the boundaries of the environment) or exceeds the maximum allowed
time for the search. If the robot’s movement over the last four steps is
minimal, indicating a lack of significant progress (i.e., it has not moved
much from its position four steps ago), we apply a small penalty of 𝑟 =
−0.1 to discourage it from staying stationary. When the robot detects an
odor concentration and has moved significantly, we reward it based on
the concentration at its current position, encouraging it to move toward
areas with higher odor concentrations. If none of these conditions are
met, the reward defaults to 𝑟 = 0, indicating no progress or penalty.
The goal is to maximize cumulative future rewards by minimizing the
distance to the odor source and reducing travel time.

We conducted training over multiple episodes, each representing
a complete search sequence starting from a random initial position
until the robot either finds the odor source or reaches the episode’s
time or boundary limits. We trained the DQN with 1,000, 3,000, and
5,000 episodes using an epsilon-greedy policy, where the robot initially
explores randomly (high epsilon) and gradually shifts to exploiting
the learned policy (epsilon decreases). We set the discount factor for
future rewards to 0.99, ensuring that the robot values immediate
rewards while considering long-term benefits. We evaluated the DQN’s
performance using the same metrics as in our knowledge-driven OSL
framework: Success Rate (SR), Averaged Travel Distance (TD), and
Averaged Search Time (ST). These metrics comprehensively assess the
DQN’s ability to navigate the robot to the odor source.

4.4. Sample trials

To illustrate the performance of our knowledge-driven OSL frame-
work under various memory settings, we demonstrated sample trials
using 0-shot, 3-shot, and 5-shot memory configurations. We design the
trials to illustrate the impact of different levels of memory integration
on the robot’s ability to navigate the plume field and accurately locate
the odor source.

The LLM agent can choose one of two actions: moving cross wind
or moving against the wind. When the action is crosswind, the robot
moves in a direction that is 90 degrees to the wind direction. In
Fig. 12, the robot initially performs crosswind movements as no plume
concentration is detected. When the robot still fails to detect any plume
in subsequent positions, it continues to choose the crosswind action.
This results in back-and-forth movements, which are a natural part of
the exploratory process during crosswind actions, allowing the robot
to search for the plume in a broad area. When the robot detects a
plume concentration that is larger than the threshold, the LLM agent
switches to the against-wind action, guiding the robot upwind to follow
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Fig. 11. The Deep Q-Network (DQN) architecture for robotic odor source localization. The framework consists of sensors, a DQN agent, and an environment.
Fig. 12. Sample trials of the knowledge-driven OSL framework for past experience: (a) 0-shot memory, (b) 3-shot memory, and (c) 5-shot memory,.
the plume. The observed redundancy in the trajectory is expected
and reasonable for this exploratory strategy. If the plume had been
detected during the initial crosswind movements, the robot would
have immediately switched to the upwind (surge) behavior, avoiding
repeated movements. The behavior reflects the LLM’s decision-making
process and the inherent challenges of locating odor sources in dynamic
environments.

In the 0-shot trial (Fig. 12(a)), the robot operates without leveraging
prior experiences, relying solely on the LLM’s real-time reasoning to
navigate toward the odor source. The trajectory shows the robot nav-
igating toward the odor source with some exploration due to the lack
of memory. Despite this, the robot successfully locates the odor source,
demonstrating the inherent capability of the LLM to interpret and act
on sensory inputs effectively. The 3-shot trial (Fig. 12(b)) exhibits
enhanced navigation efficiency as the robotic agent utilizes memory
recall to retrieve three similar past experiences from the memory
module. The trajectory is more direct, with fewer deviations compared
to the 0-shot trial, indicating the benefits of incorporating relevant past
experiences into the decision-making process. This results in quicker
and more accurate localization of the odor source. Conversely, the 5-
shot trial (Fig. 12(c)) incorporates five past experiences, providing a
12 
richer historical context for the decision-making process. While this
setup allows for a highly informed approach, it also introduces the risk
of over-reliance on historical data, occasionally leading to suboptimal
paths that may not perfectly align with the current environmental
setup. It highlights the potential drawbacks of excessive memory usage,
where too much reliance on past data can reduce the adaptability and
efficiency of navigation.

Overall, these sample trials provide valuable insights into how
different levels of memory integration affect the performance of robotic
odor source localization. They illustrate a clear trade-off between
memory use and navigational efficiency, emphasizing the importance
of finding an optimal balance to maximize the effectiveness of the
knowledge-driven OSL framework in dynamic and varied environ-
ments.

4.5. Ablation study

The ablation study aimed to rigorously evaluate the impact of
different memory utilization levels and configuration settings on the
performance of our knowledge-driven OSL framework. This study pro-
vides key insights into how varying the integration of past experiences
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Table 2
Performance metrics of different levels of memory utilization for OSL.

Memory Success
Rate (SR) ↑

Averaged
Travel Distance
(TD) ↓

Averaged
Search
Time (ST) ↓

0-shot 8/10 2.35 15.5
3-shot 10/10 2.19 14.5
5-shot 9/10 2.20 14.7

Table 3
Performance metrics of different settings of configurations for OSL.

Configuration Success
Rate (SR) ↑

Averaged
Travel Distance
(TD) ↓

Averaged
Search
Time (ST) ↓

Adaptive-Hint 10/10 1.93 13.5
Adaptive-No Hint 8/10 2.01 13.2
Hint Only 4/10 1.44 6.8

and adaptive strategies influences the robot’s ability to locate odor
sources effectively.

Table 2 presents the performance metrics across different levels
of memory utilization within the OSL framework: 0-shot, 3-shot, and
5-shot. The 3-shot memory setting demonstrated the best overall per-
formance, achieving a high success rate (SR) of 10∕10, along with
he lowest averaged travel distance (TD) and search time (ST). This
uggests that utilizing a moderate amount of past experiences (3-shot)
ptimally enhances the robot’s efficiency in navigating and locating the
dor source. In contrast, the 0-shot setting, which depends solely on
eal-time reasoning without memory recall, resulted in lower success

rates and longer travel distances. The 5-shot setting, while slightly
better than 0-shot, did not outperform the 3-shot configuration, indi-
cating that over-reliance on historical data does not necessarily lead to
improved performance.

Our results show that, the 3-shot configuration perform optimally in
ur OSL framework as it retrieves three highly relevant examples with
 higher similarity threshold, maintaining a concise focus on the most
ligned scenarios. This setup enhances the LLM’s reasoning process by
roviding precise, contextually relevant guidance.

In contrast, the 0-shot configuration lacks contextual memory, re-
ying solely on generalized reasoning, which often leads to suboptimal

navigation and reduced success rates. On the other hand, the 5-shot
onfiguration introduces additional diversity by retrieving two more

past experiences. While this can offer a broader historical context,
it also raises the likelihood of including less relevant or conflicting
scenarios, especially in environments with limited variability like ours.

his increased diversity sometimes leads to over-reliance on histor-
cal data, which can produce suboptimal decision-making and less
fficient navigation paths. Furthermore, the 5-shot configuration faces
everal other challenges that impact the LLM’s reasoning process. One
uch challenge is scenario redundancy, which occurs when additional
emories overlap with existing ones, contributing limited new in-

ights and introducing unnecessary complexity to the LLM’s reasoning
rocess. Additionally, including more memories in low-variability envi-
onments increases computational and decision-making burden, which
verwhelms the LLM and reduces its ability to generalize effectively to
he current scenario. Lastly, using a larger set of examples increases the
isk of overfitting, where the reasoning process becomes too focused on
pecific patterns from the retrieved data, which makes it less adaptable
o new or varied scenarios.

Table 3 summarizes the performance metrics for different config-
uration settings: Adaptive-Hint, Adaptive-No Hint, and Hint Only, all
utilizing the 3-shot memory setting, which showed the best perfor-
mance. Among these, the Adaptive-Hint configuration demonstrated
superior performance, achieving the highest success rate (SR) of 10∕10
and the most efficient travel distance (TD) and search time (ST). This
configuration adjusts the robot’s speed based on the detected odor
 w
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Table 4
Performance metrics of different OSL algorithms for the original odor source location.

OSL Algorithms Training
episodes

Success Rate
(SR) ↑

Averaged
Travel
Distance
(TD) ↓

Averaged
Search
Time (ST) ↓

(LLM) Adaptive-Hint
(3-shot)

– 10/10 1.93 13.5

Moth-inspired method
[92]

– 7/10 2.28 16.2

DQN [37]
1000 8/10 1.45 13.1

3000 9/10 1.91 16.3

5000 9/10 3.5 22.8

concentration (adaptive speed) and provides hints or guidance on the
robot’s movement direction based on this concentration data (hints
about the robot’s movement). This combined approach of adapting
speed and using directional hints proved to be the most effective in
guiding the robot to locate the odor source efficiently. In contrast, the
Adaptive-No Hint configuration showed a slightly lower success rate
and efficiency, indicating that the absence of hints affects the robot’s
ability to navigate optimally. The Hint Only configuration, which relied
solely on directional hints without adaptive speed adjustments, had
the lowest success rate and performance metrics. This underscores the
importance of combining adaptive strategies with memory utilization
to enhance the robot’s navigation capabilities.

The results from the ablation study reveal that the optimal approach
or robotic odor source localization involves a moderate level of mem-
ry utilization (3-shot) combined with adaptive strategies (Adaptive-
int). This balance maximizes the robot’s ability to accurately and ef-

iciently locate odor sources by effectively combining past experiences
ith real-time environmental feedback.

4.6. Comparative analysis with DQN and moth-inspired method

In this section, we compared the performance of our knowledge-
driven OSL framework with a DQN based approach [37] and a Moth-
inspired method [92]. The comparison focuses on key performance
metrics, including success rate (SR), averaged travel distance (TD), and
averaged search time (ST), across both original and flipped odor source
locations.

Table 4 presents the performance metrics for the original odor
ource location. The knowledge-driven OSL framework with the
daptive-Hint (3-shot) configuration achieved the highest success rate
10∕10). It demonstrated the most efficient navigation, with the short-
st averaged travel distance (1.93) and averaged search time (13.5).

This performance underscores the effectiveness of combining memory
recall with adaptive strategies in the knowledge-driven approach. In
contrast, the DQN approach, despite showing competitive performance
in some metrics, exhibited inconsistencies. While the DQN trained with
3,000 episodes achieved a success rate of 9/10, its performance in
terms of averaged travel distance (1.91) and averaged search time
(16.3) was less efficient than that of the knowledge-driven approach.
Additionally, as the training episodes increased to 5,000, the DQN’s
performance declined, indicating the model’s limitations in maintaining
consistent efficiency and accuracy across varying conditions. While
showing reasonable performance with a success rate of 7/10, the Moth-
nspired method fell short compared to the knowledge-driven and
QN approaches, particularly in terms of average travel distance and

search time. It suggests that while biologically inspired methods can
e effective, they may not fully capture the complexities of navigating
aried and dynamic environments.

Table 5 summarizes the performance metrics after flipping the odor
source location along the 𝑥-axis. The knowledge-driven OSL frame-

ork, particularly the Adaptive-Hint (3-shot) configuration, continued
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Fig. 13. Examples of robotic agent navigation to the odor source location. (a) and (d) show that the robotic agent reaches the odor source location using the LLM’s reasoning,
demonstrating efficient navigation and effective decision-making, (b) and (e) show that the robotic agent reaching the odor source location using the DQN approach, which,
while sometimes successful, often results in less efficient paths and higher search times, and (c) and (f) show that the robotic agent reaching the odor source location using the
Moth-inspired method, demonstrating efficient navigation in which agent is in the plume.
to show strong performance with an 8/10 success rate. It highlights
the framework’s adaptability to changes in environmental conditions.
In contrast, the DQN approach completely failed, with a 0/10 success
rate across all training levels, underscoring its inability to generalize
to new, unseen conditions. While maintaining a 7/10 success rate, the
Moth-inspired method again showed less efficiency in terms of travel
distance and search time compared to the knowledge-driven approach.
These results indicate that the DQN and Moth-inspired methods lack the
robustness and adaptability required for effectively handling dynamic
and altered environments, as evidenced by the significant drop in
performance when the odor source location was flipped.

Figs. 13 and 14 visually depict the trajectories of the robotic agents
using the different approaches for both the original and flipped odor
source locations. For the original odor source location, the knowledge-
driven agent (Figs. 13(a) and 13(d)) demonstrated efficient and direct
navigation to the odor source, showcasing its effective decision-making
and adaptability. On the other hand, the DQN agent (Figs. 13(b) and
13(e)) exhibited less consistent and often less direct paths, with a
notable decline in performance when training episodes were increased,
highlighting the limitations in its generalization capabilities. The Moth-
inspired method (Figs. 13(c) and 13(f)) showed a consistent trajec-
tory but was less efficient overall compared to the knowledge-driven
approach.

In the flipped odor source scenario (Fig. 14), the knowledge-driven
agent (Fig. 14(a)) continued to perform effectively, maintaining adapt-
ability to the new environmental conditions. In contrast, the DQN agent
14 
Table 5
Performance metrics of different OSL algorithms for the flipped odor source location.

OSL Algorithms Training
Episodes

Success Rate
(SR) ↑

Averaged
Travel
Distance
(TD) ↓

Averaged
Search
Time (ST) ↓

(LLM) Adaptive-Hint
(0-shot)

– 7/10 2.53 15.7

(LLM) Adaptive-Hint
(3-shot)

– 8/10 2.65 16.2

(LLM) Adaptive-No Hint
(3-shot)

– 4/10 3.28 19.7

Moth-inspired method
[92]

– 7/10 3.85 23.8

DQN [37]
1000 0/10 51.8 99

3000 0/10 46.12 99

5000 0/10 56.68 99

failed to locate the odor source entirely (Fig. 14(b)), reinforcing its
struggle with generalization. The Moth-inspired method (Fig. 14(c)),
although maintaining some success, again demonstrated inefficiency in
navigating the altered environment, with the robot often taking longer
paths to the odor source.

The comparative analysis clearly demonstrates the superior perfor-
mance of the knowledge-driven OSL framework over the DQN and
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Fig. 14. a) Robotic agent reached to the odor source location using LLM’s reasoning: 3-shot memory, (b) shows that DQN agent failed to reach the odor source location where
the odor source location is flipped along the 𝑥-axis, and (c) show that the robotic agent reaching the odor source location using the Moth-inspired method, often results in less
efficient paths and higher search times.
Fig. 15. a) An experimental setup shows the robotic agent in the search area, with a humidifier releasing ethanol vapor as the odor source and a fan to establish airflow. The
agent starts from a downwind location, navigating toward the ethanol source. (b) A schematic representation of the search area with a fan setup creates a uniform airflow. The
diagram includes the odor source location and the initial robot positions, illustrating the experimental conditions for OSL tests.
Moth-inspired methods. Integrating large language models (LLMs) with
memory-assisted decision-making enhances the robot’s ability to locate
odor sources efficiently and provides robust adaptability across varied
environmental scenarios. The DQN approach, while effective under
certain conditions, needs to improve with generalization, particularly in
dynamic or altered environments, making it less reliable for real-world
applications. The Moth-inspired method, although consistent, lacks the
efficiency and adaptability needed for optimal performance. Overall,
the knowledge-driven framework stands out as the most effective so-
lution for robotic odor source localization in complex and dynamic
environments.

4.7. Real world experiment results of OSL

4.7.1. Search area
In the real-world experimental setup of our odor source localization

(OSL) study, we defined the search area to test the robot’s navigation
and detection capabilities in a controlled environment. The search
area covered a two-dimensional space of 8.2 meters by 3.3 m, as
shown in Fig. 15(a). Ethanol vapor, chosen for its non-toxic properties
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and frequent use in OSL research [93], served as the odor source.
We employed a humidifier as the plume generator to disperse the
ethanol vapor throughout the experiments. To ensure a uniform airflow
direction across the search area, we placed a single fan behind the
odor source, facilitating the diffusion of the plume, as presented in
Fig. 15(b).

4.7.2. Robotic agent specifications
The Turtlebot3 mobile robot platform was utilized in our exper-

iments, equipped with built-in sensors and components tailored for
navigation and sensory tasks in odor source localization. The robot’s
sensor suite includes a 360-degree LDS-02 Laser Distance Sensor for
measuring the distance, a WindSonic Anemometer for measuring wind
speed and direction, and an MQ3 alcohol sensor to detect chemical
plume concentrations. Fig. 16 shows the robotic agent used in the
experiments.

Powered by a Raspberry Pi 4 CPU, the Turtlebot3 runs on Ubuntu
20.04 with the Robot Operating System (ROS) Noetic, allowing for
seamless integration and real-time communication. The robot operates
in conjunction with a remote personal computer (PC) via a local area
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Fig. 16. Robotic agent used in the experiments, equipped with various sensors
including a chemical sensor and an anemometer to measure odor concentrations and
airflow, respectively.

network, which facilitates the control and data exchange necessary for
effective robotic navigation and data processing in complex odor lo-
calization scenarios. This setup ensures robust performance in dynamic
environments, enabling precise control and responsiveness during the
localization tasks.

4.7.3. OSL experimental design
We designed the experiments to evaluate the effectiveness of our

proposed Knowledge-driven OSL framework, which leverages Large
Language Models (LLMs) in a real-world setup. Additionally, we as-
sessed the performance of robotic OSL using a Deep Q-Network (DQN)
model based on Reinforcement Learning (RL). Both approaches were
tested under controlled conditions to determine their performance and
adaptability in real-world scenarios.

We incorporated a dynamic memory setting in the knowledge-
driven framework to enhance decision-making across various envi-
ronmental conditions. We tested three configurations: Adaptive-Hint,
Adaptive-No Hint, and Hint Only, with memory settings varied across
0-shot, 3-shot, and 5-shot conditions to assess the impact of accumu-
lated knowledge on performance. Each configuration was designed to
evaluate the framework’s efficiency and success rate, with detailed
specifics provided in Section 4.1. Trials were conducted under stan-
dardized conditions, with success defined by the robot’s proximity to
the odor source—a trial was deemed successful if the robot reached
within 0.6 meters of the target location. If the robot failed to locate the
odor source within 120 s, the trial was considered a failure. The robotic
agent’s control parameters were set to ensure optimal performance
during operation. The initial linear velocity (𝑙𝑣) and angular velocity
(𝜔𝑐) were set at 0.1 m/s and 0.3 rad/s, respectively, for the Knowledge-
driven OSL framework. To improve navigation toward the odor source,
the robot employed an adaptive speed mechanism, adjusting its linear
velocity based on the concentration of the detected odor. The adaptive
speed was determined using the following formula:

𝑙𝑣 =

{

0.1 if 𝑐 > 𝛿𝑐 ;
0.08 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(7)

where 𝑐 represents the concentration of the odor at the robot’s current
position, and 𝛿𝑐 is the threshold concentration level used to determine
whether the robot should increase its linear velocity.

For the DQN algorithm, trained over 5000 episodes, the initial
values of 𝑙𝑣 and 𝜔𝑐 were set at 0.02 m/s and 0.02 rad/s, respectively.
This training aimed to optimize the robot’s ability to navigate toward
the odor source based on real-time sensor inputs, without relying on a
pre-existing knowledge base.

Each experimental setup involved five test runs, initialized from the
same five starting positions. Fig. 15(b) shows these starting positions
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Fig. 17. Robot’s navigation path during an OSL test under the Adaptive-Hint con-
figuration with a 3-shot memory setting. The robot’s trajectory is depicted, showing
its approach toward the odor source, marked by the red dot. The blue and red lines
represent the robot’s movement upwind and crosswind, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

and the airflow setups used during the experimental runs. The experi-
ments evaluated each algorithm using predefined performance metrics:
Success Rate (SR), averaged Travel Distance (TD), and averaged Search
Time (ST), as detailed in Section 4.1. The comprehensive testing of
both approaches allows us to comprehensively assess the practical
applicability, efficiency, and adaptability of each method in dynamic
environments, offering insights into their potential uses in challenging
OSL tasks.

4.7.4. Sample trials
To demonstrate the practical application and validate the perfor-

mance of our Knowledge-driven OSL framework, we conducted specific
trial runs and monitor each step and record the robot’s actions and
decisions. In a representative trial run using the Knowledge-driven OSL
framework with the 3-shot memory setting under the Adaptive-Hint
configuration, the robot was initialized at a starting point on the edge
of the search area. Upon initialization, the robot immediately began
processing environmental data using its chemical sensor and anemome-
ter. At 5 s, it detected a significant chemical concentration, indicating
the presence of an odor plume and triggering its navigation toward the
source. The robot adjusted its path based on the intensity of ethanol
vapor and wind direction data. By 56.2 s, the robot successfully reached
within 0.6 meters of the odor source, well within the 120-second time
limit set for the experiment.

The integration of prior experiences allowed the robot to opti-
mize its path efficiently, avoiding unnecessary detours and steadily
approaching the odor source. The trial conclusively demonstrated the
framework’s effectiveness, with the robot achieving its goal
significantly under the allotted time. The robot’s trajectory during this
trial is presented in Fig. 17, while snapshots of the robot’s naviga-
tion at different times are shown in Fig. 18. These images illustrate
the robot’s decision-making process as it responds to varying plume
concentrations.
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Fig. 18. Snapshots of robotic agent navigation to the odor source location in different time. (a) represents the LLM’s reasoning and decision-making at position (−2.8, 0.59) of
the robotic agent. (b) represents the LLM’s reasoning and decision-making at position (1.00, 0.39) of the robotic agent.
4.7.5. Experimental results
In our real-world experiments, the Knowledge-driven OSL frame-

work under different configurations— Adaptive-Hint, Adaptive-No
Hint, and Hint Only—each tested with 0-shot, 3-shot, and 5-shot mem-
ory settings. The performance was primarily measured using Success
Rate (SR), averaged Travel Distance (TD), and averaged Search Time
(ST) metrics.

The Adaptive-Hint configuration with the 3-shot memory setting
emerged as the most effective, achieving a perfect success rate with
optimized travel distance and search time. This configuration struck
a successful balance between utilizing historical data and adapting to
real-time environmental changes, leading to efficient navigation and
odor source localization. In contrast, the Adaptive-No Hint configura-
tion demonstrated moderate success. While it maintained adaptability,
the absence of hints led to slightly less efficient performance, partic-
ularly in the 3-shot setting, where longer search times and increased
travel distances were observed. The Hint Only configuration showed
that strategic hints alone could enhance decision-making, though it
was less effective compared to the adaptive configurations, which
dynamically adjusted based on environmental inputs. The results of
these configurations are summarized in Table 6.
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Table 6
Performance metrics for the original odor source location.

Configuration Memory Success Rate
(SR) ↑

Averaged
Travel
Distance
(TD) ↓

Averaged
Search
Time (ST) ↓

Adaptive-Hint
0-shot 0.8 5.16 64.18

3-shot 1.0 5.79 53.03

5-shot 1.0 5.85 53.81

Adaptive-No Hint 0-shot 0.8 5.09 65.59

3-shot 1.0 6.07 56.85

Hint Only 3-shot 1.0 5.59 51.36

Overall, these experiments highlighted the significant impact of in-
tegrating memory and adaptive strategies into the LLM-driven decision-
making process, resulting in more accurate and effective navigation to
the odor source. We visually presented the results of the navigation
strategies and the robot’s trajectories in Figs. 19.
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Fig. 19. (a), (b) and (c) show the results of LLM within the Adaptive-Hint configuration in 0-shot, 3-shot and 5-shot setting respectively. (d) and (e) show the results of LLM

within the Adaptive-No Hint configuration in 0-shot and 3-shot setting respectively. (f) shows the results of LLM within the Only Hint configuration in 3-shot setting.
Fig. 20. Shows the results of DQN trained with 5000 episodes.
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To provide a comparative analysis, we also evaluated the DQN
algorithm trained over 5000 episodes under similar experimental con-
ditions. The DQN demonstrated a lower success rate and less reliable
results compared to the Knowledge-driven OSL framework. It struggled
with longer travel distances and extended search times, underscoring
its limitations in dynamic environments. We presented these results in
Fig. 20, which illustrates the trajectories of the robotic agent.

The experimental results demonstrate the superior performance of
the Knowledge-driven OSL framework, particularly within the 3-shot
setting of the Adaptive-Hint configuration. This configuration not only
achieved a perfect success rate but also delivered optimal metrics for
travel distance and search time. In contrast, the DQN approach lacked
consistency and adaptability for robust real-world odor localization
tasks.

We measured the inference time of the LLM during navigation and
observed that the minimum inference time is 3.59 s. While this intro-
duces a delay compared to traditional reinforcement learning or sensor-
based navigation methods, it did not significantly affect navigation
accuracy in our experiments. More importantly, our knowledge-driven
approach demonstrates strong generalization capability, performing
effectively even when the odor source is flipped during the tests.
In contrast, the DQN struggled to generalize across different search
environments, as illustrated in our experimental results. For instance,
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Fig. A.21. The prompt template for the reasoning module in our OSL experiment. The prompts: System Prompts box and Scenario Description box are fixed, while the prompts
in the colored boxes vary depending on the current scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
Fig. 14 in Section 4.6 compares the results of our method with DQN,
while Figs. 19 and 20 further emphasize this difference, particularly in
real-world adaptation scenarios.

The comprehensive analysis underscores the superior adaptability
and efficiency of the Knowledge-driven OSL framework compared to
traditional reinforcement learning approaches like DQN. This demon-
strates the framework’s practical applicability and effectiveness in dy-
namic real-world odor localization tasks, suggesting promising poten-
tial for future enhancements and applications.

5. Conclusion and future work

In this research project, we developed a knowledge-driven frame-
work for robotic odor source localization (OSL) by integrating large
language models (LLMs) to enhance the robot’s navigation capabilities.
Our framework leverages the contextual understanding and decision-
making abilities of LLMs, augmented with a memory module that
stores and recalls past experiences. Through a series of simulations
and real-world experiments, we demonstrated the effectiveness of our
approach compared to a traditional reinforcement learning method
using Deep Q-Networks (DQN). The results from both simulated and
real-world studies indicate that the inclusion of memory, especially
with 3-shot experiences, significantly improves the robot’s performance
in locating the odor source. In real-world tests, the adaptive-hint config-
uration with 0-shot and 3-shot memory settings consistently achieved
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the highest success rates, shortest travel distances, and fastest search
times, demonstrating the framework’s efficiency and robustness across
various environments. The adaptive speed mechanism further enhances
navigation efficiency, leading to shorter travel distances and reduced
search times in simulations and physical experiments. Additionally, our
framework exhibited robust generalization capabilities, maintaining
high performance even when we alter the odor source location or
change the experimental conditions. Overall, the knowledge-driven
approach outperformed the DQN-based method in both success rate
and efficiency and showcased superior adaptability to dynamic environ-
mental conditions. It highlights the potential of integrating LLMs and
memory modules for complex robotic tasks in varied and unpredictable
environments.

Building on the success of our current framework, we can explore
several future research directions. First, investigating more advanced
memory mechanisms, such as dynamic or hierarchical memory net-
works, could enhance the robot’s ability to recall and utilize past
experiences in more complex scenarios. The memory retrieval pro-
cess is optimized using cosine similarity to identify contextually rel-
evant scenarios. While effective for general semantic alignment, it
does not prioritize decision-critical features such as wind direction,
odor concentration gradients, or inferred proximity to the odor source.
Enhancements like weighted embeddings or tagging memories with
critical metadata could refine retrieval accuracy and allow the frame-
work to adapt dynamically to varying environmental complexities.
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Fig. A.22. The 3-shot prompts example for the scenario shown.
The framework currently relies on training data from low-variability
scenarios, which may limit its effectiveness in dynamic or complex
environments. Expanding the training data to include more diverse
and high-variability scenarios, such as through synthetic or augmented
data, could improve its generalization to unseen conditions.

While this study focuses on single-source odor localization to es-
tablish a baseline for the framework’s effectiveness, investigating mul-
tiple and distracting odor source localization is one of our future
research directions. To address the challenges of multi-source envi-
ronments, improvements would be needed in decision-making pro-
cesses, filtering mechanisms, and learning algorithms. Additionally,
integrating Kalman filters with LLM pre-filtered information offers a
promising direction for enhancing real-time tracking and state estima-
tion, improving computational efficiency and robustness in dynamic
scenarios.

Moreover, extending the framework to support multiple collabo-
rative robots could improve efficiency and accuracy in locating odor
20 
sources, especially in more significant or more challenging environ-
ments. Lastly, additional sensory inputs, such as thermal imaging or
infrared sensors, could provide a more comprehensive understand-
ing of the environment and enhance the robot’s decision-making pro-
cess. Exploring reinforcement learning techniques that can learn effec-
tively from sparse rewards could complement our knowledge-driven
approach, particularly when odor concentrations are infrequent or
difficult to detect. Finally, enhancing the framework’s few-shot learning
capabilities by fine-tuning the LLMs with domain-specific data could
lead to more accurate and contextually relevant decision-making.
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Appendix. Prompts generation in knowledge-driven OSL frame-
work

In this section, we detail the specific design of prompts used in
the reasoning module. As mentioned in the article, the prompts for
the reasoning module primarily consist of three parts: system prompts,
scenario description, and few-shot experience. Each part plays a crucial
role in guiding the LLM to make informed decisions for the robotic odor
source localization (OSL) task.

A.1. Reasoning prompts generation

The system prompts section is entirely fixed and includes the foun-
dational information necessary for the LLM to understand the task
at hand. This section provides an introduction to the odor source
localization task, detailed instructions for input and output formats, and
specific formatting requirements for LLM responses to ensure consis-
tency and clarity. Fig. A.21 illustrates the prompt template used in our
OSL experiment, highlighting the fixed nature of the system prompts
and the dynamically generated scenario descriptions.

The scenario description, while mostly fixed, contains dynamically
generated parts based on the current decision frame. This section pro-
vides information about the robot’s current position within the search
area, details about wind direction and speed, odor concentrations de-
tected by the robot’s sensors, and environmental conditions that may
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affect navigation. These dynamic elements are crucial as they provide
the real-time context necessary for the LLM to generate appropriate
navigation strategies. The scenario description is embedded into vectors
and used as query inputs to the memory module to retrieve relevant ex-
periences. Available actions include moving against the wind direction
or moving across the wind direction. The default navigation intention
is: Your navigation intention is to locate the odor source efficiently.

As for the few-shot experience, it is entirely obtained from the mem-
ory module. Each experience consists of a human-LLM dialogue pair,
where the human question includes the scenario description at that
decision frame, and the LLM response represents the correct reasoning
and decision made by the robotic agent. The extracted experiences are
directly utilized with a few-shot prompting technique to input into the
LLM, enabling in-context learning. This approach allows the reasoning
module to adapt its decision-making process based on previous experi-
ences stored in the memory module, ensuring continuous improvement
and adaptability in locating the odor source.

The few-shot experience component is derived entirely from the
memory module and consists of a human-LLM dialogue pair. The hu-
man question includes the scenario description at that decision frame,
and the LLM response represents the reasoning and decision made by
the robotic agent. These experiences are used with a few-shot prompt-
ing technique to input into the LLM, enabling in-context learning. This
process allows the reasoning module to adapt its decision-making based
on previously encountered scenarios, ensuring continuous learning and
improvement. Fig. A.22 demonstrates the results of a 3-shot experi-
ence query, which includes three ‘‘move against the wind direction’’
decisions.

To illustrate, let us consider an example scenario where the robotic
agent is tasked with navigating toward an odor source. The prompt
generation process would include system prompts, such as a task
description and instructions, a dynamically generated scenario descrip-
tion, and relevant few-shot experiences. The combination of these
elements enables the LLM to generate well-informed decisions for the
current scenario.

By leveraging LLMs and memory for contextual understanding and
decision-making, our framework provides a significant advancement
over traditional OSL methods, offering improved adaptability and ef-
ficiency in dynamic environments. Figs. A.21 and A.22 illustrate the
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Fig. A.23. (a) Case Study I: Reasoning Module for action 1 - Move across wind direction. (b) Case Study II: Reasoning Module for action 2 - Move against wind direction.
detailed structure and examples of the prompts used in the reasoning
module, showcasing how they guide the LLM in generating effective
navigation strategies.

A.2. Case study of reasoning module

First, we present the results of the reasoning module for two cases,
as shown in Fig. A.23. In Case Study I (Fig. A.23(a)), the robotic agent
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decides to move across the wind direction based on the current environ-
mental data and stored experiences. The reasoning module processes
the sensory inputs, retrieves relevant past experiences, and generates a
prompt that guides the robot to move across the wind direction. This
decision is based on the logic that moving across the wind direction will
likely lead to encountering a higher concentration of the odor plume.

In Case Study II (Fig. A.23(b)), the scenario is different, prompting
the robotic agent to move against the wind direction. The reasoning
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module again processes the current sensory inputs, retrieves relevant
past experiences, and generates a prompt that instructs the robot to
move against the wind direction. This decision is made because moving
gainst the wind direction is assessed as the best strategy to locate

the odor source based on the environmental conditions and the agent’s
experiences.

These case studies illustrate how the reasoning module enables the
robotic agent to adapt its navigation strategy based on real-time data
and stored knowledge, thereby improving the efficiency and accuracy
of locating the odor source.

Data availability

Data will be made available on request.

References

[1] G.A. Nevitt, Olfactory foraging by antarctic procellariiform seabirds: Life at high
Reynolds numbers, Biol. Bull. 198 (2) (2000) 245–253.

[2] A.D. Hasler, A.T. Scholz, Olfactory Imprinting and Homing in Salmon,
Springer-Verlag, New York, 1983.

[3] R.T. Cardé, A. Mafra-Neto, Mechanisms of flight of male moths to pheromone,
in: Insect Pheromone Research: New Directions, Springer US, 1997, pp. 275–290.

[4] N. Vickers, Mechanisms of animal navigation in odor plumes, Biol. Bull. 198 (2)
(2000) 203–212.

[5] R.T. Cardé, Odour plumes and odour-mediated flight in insects, in: Ciba Foun-
dation Symposium 200 - Olfaction in Mosquito-Host Interactions, John Wiley &
Sons, Ltd, 1996, pp. 54–70.

[6] L. Marques, H. Magalhães, R. Baptista, J. Macedo, Mobile Robot Olfaction State-
Of-The-Art and Research Challenges, Institution of Engineering and Technology
eBooks, 2022, pp. 213–248, http://dx.doi.org/10.1049/pbce097e_ch9.

[7] G. Kowadlo, R.A. Russell, Robot odor localization: A taxonomy and sur-
vey, Int. J. Robot. Res. 27 (8) (2008) 869–894, http://dx.doi.org/10.1177/
0278364908095118.

[8] M. Dunbabin, L. Marques, Robots for environmental monitoring: Significant
advancements and applications, IEEE Robot. Autom. Mag. 19 (1) (2012) 24–39.

[9] L. Wang, S. Pang, M. Noyela, K. Adkins, L. Sun, M. El-Sayed, Vision and
olfactory-based wildfire monitoring with uncrewed aircraft systems, in: 2023
20th International Conference on Ubiquitous Robots, UR, IEEE, 2023, pp.
716–723.

[10] S. Soldan, G. Bonow, A. Kroll, Robogasinspector-a mobile robotic system for
remote leak sensing and localization in large industrial environments: Overview
and first results, IFAC Proc. Vol. 45 (8) (2012) 33–38.

[11] G. Ferri, M.V. Jakuba, D.R. Yoerger, A novel method for hydrothermal vents
prospecting using an autonomous underwater robot, in: 2008 IEEE International
Conference on Robotics and Automation, IEEE, 2008, pp. 1055–1060.

[12] X. Chen, J. Huang, Odor source localization algorithms on mobile robots: A
review and future outlook, Robot. Auton. Syst. 112 (2019) 123–136.

[13] J.H. Belanger, M.A. Willis, Adaptive control of odor-guided locomotion: Behav-
ioral flexibility as an antidote to environmental Unpredictability1, Adapt. Behav.
4 (3–4) (1996) 217–253.

[14] J.H. Belanger, E.A. Arbas, Behavioral strategies underlying pheromone-modulated
flight in moths: lessons from simulation studies, J. Comp. Physiol. A 183 (1998)
345–360.

[15] F.W. Grasso, T.R. Consi, D.C. Mountain, J. Atema, Biomimetic robot lobster
performs chemo-orientation in turbulence using a pair of spatially separated
sensors: Progress and challenges, Robot. Auton. Syst. 30 (1) (2000) 115–131.

[16] F.W. Grasso, Invertebrate-inspired sensory-motor systems and autonomous,
olfactory-guided exploration, Biol. Bull. 200 (2) (2001) 160–168.

[17] H. Ishida, Y. Kagawa, T. Nakamoto, T. Moriizumi, Odor-source localization in
the clean room by an autonomous mobile sensing system, Sensors Actuators B
33 (1) (1996) 115–121.

[18] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, J. Janata, Plume-tracking robots:
A new application of chemical sensors, Biol. Bull. 200 (2) (2001) 222–226.

[19] Y. Kuwana, S. Nagasawa, I. Shimoyama, R. Kanzaki, Synthesis of the pheromone-
oriented behaviour of silkworm moths by a mobile robot with moth antennae
as pheromone sensors1This paper was presented at the Fifth World Congress
on Biosensors, Berlin, Germany, 3–5 June 1998.1, Biosens. Bioelectron. 14 (2)
(1999) 195–202.

[20] S. Pang, J.A. Farrell, Chemical plume source localization, IEEE Trans. Syst. Man
Cybern. B 36 (5) (2006) 1068–1080.

[21] L. Wang, S. Pang, J. Li, Olfactory-based navigation via model-based reinforce-
ment learning and fuzzy inference methods, IEEE Trans. Fuzzy Syst. 29 (10)
(2021) 3014–3027, http://dx.doi.org/10.1109/TFUZZ.2020.3011741.
23 
[22] W. Li, J.A. Farrell, S. Pang, R.M. Arrieta, Moth-inspired chemical plume tracing
on an autonomous underwater vehicle, IEEE Trans. Robot. 22 (2) (2006)
292–307.

[23] S. Shigaki, S. Haigo, C.H. Reyes, T. Sakurai, R. Kanzaki, D. Kurabayashi, H.
Sezutsu, Analysis of the role of wind information for efficient chemical plume
tracing based on optogenetic silkworm moth behavior, Bioinspiration Biomim.
14 (4) (2019) 046006.

[24] A.M. Matheson, A.J. Lanz, A.M. Medina, A.M. Licata, T.A. Currier, M.H. Syed, K.I.
Nagel, A neural circuit for wind-guided olfactory navigation, Nature Commun.
13 (1) (2022) 4613.

[25] R.T. Cardé, A. Mafra-Neto, Mechanisms of Flight of Male Moths to Pheromone,
Springer, MA, 1996, pp. 275–290, http://dx.doi.org/10.1007/978-1-4615-6371-
6_25.

[26] J. Li, Q. Meng, Y. Wang, M. Zeng, Odor source localization using a mobile robot
in outdoor airflow environments with a particle filter algorithm, Auton. Robots
30 (3) (2011) 281–292.

[27] L. Wang, S. Pang, J. long Li, Olfactory-based navigation via model-based
reinforcement learning and fuzzy inference methods, IEEE Trans. Fuzzy Syst.
29 (10) (2021) 3014–3027, http://dx.doi.org/10.1109/TFUZZ.2020.3011741.

[28] S. Hassan, L. Wang, K.R. Mahmud, Robotic odor source localization via vision
and olfaction fusion navigation algorithm, Sensors 24 (7) (2024) http://dx.doi.
org/10.3390/s24072309.

[29] Y. LeCun, A path towards autonomous machine intelligence, Open Rev. (62)
(2022) 0.9. 2, 2022-06-27.

[30] D. Driess, F. Xia, M.S.M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J.
Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth,
S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I.
Mordatch, P. Florence, PaLM-E: An embodied multimodal language model, 2023,
arXiv:2303.03378.

[31] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, H. Li, Instruct2Act: Mapping
multi-modality instructions to robotic actions with large language model, 2023,
arXiv:2305.11176.

[32] L. Wen, D. Fu, X. Li, X. Cai, T. Ma, P. Cai, M. Dou, B. Shi, L. He, Y. Qiao,
Dilu: A knowledge-driven approach to autonomous driving with large language
models, 2023, arXiv preprint arXiv:2309.16292.

[33] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, L. Fei-Fei, VoxPoser: Composable
3D value maps for robotic manipulation with language models, 2023, arXiv:
2307.05973.

[34] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, A. Anandkumar,
Voyager: An open-ended embodied agent with large language models, 2023,
arXiv:2305.16291.

[35] P. Gao, J. Han, R. Zhang, Z. Lin, S. Geng, A. Zhou, W. Zhang, P. Lu, C. He,
X. Yue, H. Li, Y. Qiao, LLaMA-Adapter V2: Parameter-efficient visual instruction
model, 2023, arXiv:2304.15010.

[36] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang,
Y. Qiao, Z. Zhang, J. Dai, Ghost in the minecraft: Generally capable agents for
open-world environments via large language models with text-based knowledge
and memory, 2023, arXiv:2305.17144.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M.A. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533.

[38] R. Minegishi, Y. Takahashi, A. Takashima, D. Kurabayashi, R. Kanzaki, Adaptive
Control System of an Insect Brain During Odor Source Localization, IEEE, 2013,
pp. 357–362, http://dx.doi.org/10.1109/IROS.2013.6696376.

[39] C. Ercolani, A. Martinoli, 3D Odor Source Localization using a Micro Aerial
Vehicle: System Design and Performance Evaluation, IEEE, 2020, pp. 6194–6200,
http://dx.doi.org/10.1109/IROS45743.2020.9341501.

[40] G. Lu, Q. Zhang, T. Qie, Q. Feng, A robot odor source localization strategy based
on bionic behavior, IOP Conf. Ser. Mater. Sci. Eng. 470 (1) (2019) 012033,
http://dx.doi.org/10.1088/1757-899X/470/1/012033.

[41] S. Shigaki, M. Yamada, D. Kurabayashi, K. Hosoda, Robust moth-inspired
algorithm for odor source localization using multimodal information, Sensors
23 (3) (2023) http://dx.doi.org/10.3390/s23031475, 1475–1475.

[42] J. Bailey, M. Willis, R. Quinn, A multi-sensory robot for testing biologically-
inspired odor plume tracking strategies, in: Proceedings, 2005 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, 2005, pp.
1477–1481, http://dx.doi.org/10.1109/AIM.2005.1511219.

[43] F. Rahbar, A. Marjovi, P. Kibleur, A. Martinoli, A 3-D bio-inspired odor source
localization and its validation in realistic environmental conditions, IEEE, 2017,
pp. 3983–3989, http://dx.doi.org/10.1109/IROS.2017.8206252.

[44] J.-G. Li, Q.-H. Meng, Y. Wang, M. Zeng, Odor source localization using a mobile
robot in outdoor airflow environments with a particle filter algorithm, Auton.
Robots (2011) http://dx.doi.org/10.1007/S10514-011-9219-2.

[45] M.J. Anderson, J. Sullivan, T.K. Horiuchi, S.B. Fuller, T.L. Daniel, A bio-hybrid
odor-guided autonomous palm-sized air vehicle, Bioinspir. Biomim. (2020) http:
//dx.doi.org/10.1088/1748-3190/ABBD81.

[46] D.W.D. Muhamad Rausyan Fikri, Palm-sized quadrotor source localization using
modified bio-inspired algorithm in obstacle region, Int. J. Electr. Comput. Eng.
12 (4) (2022) http://dx.doi.org/10.11591/ijece.v12i4.pp3494-3504, 3494–3494.

http://refhub.elsevier.com/S0921-8890(25)00001-6/sb1
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb1
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb1
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb2
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb2
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb2
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb3
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb3
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb3
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb4
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb4
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb4
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb5
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb5
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb5
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb5
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb5
http://dx.doi.org/10.1049/pbce097e_ch9
http://dx.doi.org/10.1177/0278364908095118
http://dx.doi.org/10.1177/0278364908095118
http://dx.doi.org/10.1177/0278364908095118
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb8
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb8
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb8
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb9
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb10
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb10
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb10
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb10
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb10
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb11
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb11
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb11
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb11
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb11
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb12
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb12
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb12
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb13
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb13
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb13
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb13
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb13
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb14
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb14
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb14
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb14
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb14
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb15
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb15
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb15
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb15
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb15
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb16
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb16
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb16
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb17
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb17
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb17
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb17
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb17
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb18
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb18
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb18
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb19
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb20
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb20
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb20
http://dx.doi.org/10.1109/TFUZZ.2020.3011741
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb22
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb22
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb22
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb22
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb22
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb23
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb24
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb24
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb24
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb24
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb24
http://dx.doi.org/10.1007/978-1-4615-6371-6_25
http://dx.doi.org/10.1007/978-1-4615-6371-6_25
http://dx.doi.org/10.1007/978-1-4615-6371-6_25
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb26
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb26
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb26
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb26
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb26
http://dx.doi.org/10.1109/TFUZZ.2020.3011741
http://dx.doi.org/10.3390/s24072309
http://dx.doi.org/10.3390/s24072309
http://dx.doi.org/10.3390/s24072309
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb29
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb29
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb29
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2305.11176
http://arxiv.org/abs/2309.16292
http://arxiv.org/abs/2307.05973
http://arxiv.org/abs/2307.05973
http://arxiv.org/abs/2307.05973
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2304.15010
http://arxiv.org/abs/2305.17144
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb37
http://dx.doi.org/10.1109/IROS.2013.6696376
http://dx.doi.org/10.1109/IROS45743.2020.9341501
http://dx.doi.org/10.1088/1757-899X/470/1/012033
http://dx.doi.org/10.3390/s23031475
http://dx.doi.org/10.1109/AIM.2005.1511219
http://dx.doi.org/10.1109/IROS.2017.8206252
http://dx.doi.org/10.1007/S10514-011-9219-2
http://dx.doi.org/10.1088/1748-3190/ABBD81
http://dx.doi.org/10.1088/1748-3190/ABBD81
http://dx.doi.org/10.1088/1748-3190/ABBD81
http://dx.doi.org/10.11591/ijece.v12i4.pp3494-3504


K.R. Mahmud et al. Robotics and Autonomous Systems 186 (2025) 104915 
[47] J. Belanger, M. Willis, Biologically-inspired search algorithms for locating unseen
odor sources, in: Proceedings of the 1998 IEEE International Symposium on
Intelligent Control (ISIC) Held Jointly with IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA) Intell, 1998, pp.
265–270, http://dx.doi.org/10.1109/ISIC.1998.713672.

[48] W. Jatmiko, F. Jovan, R.Y.S. Dhiemas, A.M. Sakti, F.M. Ivan, A. Febrian, T.
Fukuda, K. Sekiyama, Robots implementation for odor source localization using
PSO algorithm, WSEAS Trans. Circuits Syst. Arch. (2011) http://dx.doi.org/10.
5555/2001161.2001162.

[49] K. Gaurav, A. Kumar, R. Singh, Single and multiple odor source localization
using hybrid nature-inspired algorithm, Sadhana-Academy Proc. Eng. Sci. 45 (1)
(2020) 1–19, http://dx.doi.org/10.1007/S12046-020-1318-3.

[50] D. Gong, C. liang Qi, Y. Zhang, M. Li, Modified particle swarm optimization for
odor source localization of multi-robot, 2011, http://dx.doi.org/10.1109/CEC.
2011.5949609.

[51] Y. Zou, D. Luo, W. Chen, Swarm Robotic Odor Source Localization Using Ant
Colony Algorithm, IEEE, 2009, pp. 792–796, http://dx.doi.org/10.1109/ICCA.
2009.5410516.

[52] S. Wang, S. Sun, M. Liu, B. Gao, Y. Wang, Resource-aware probability-based
collaborative odor source localization using multiple UAVs, 2023, http://dx.doi.
org/10.48550/arxiv.2303.03830.

[53] M. Staples, C.H. Hugenholtz, T.E. Barchyn, M. Gao, A comparison of multiple
odor source localization algorithms, Sensors 23 (10) (2023) http://dx.doi.org/
10.3390/s23104799, 4799–4799.

[54] L.D. Nhat, D. Kurabayashi, Odor source localization in obstacle regions using
switching planning algorithms with a switching framework, Sensors 23 (3)
(2023) http://dx.doi.org/10.3390/s23031140, 1140–1140.

[55] L. Cheng, Y. Li, Multi-sensory olfactory quadruped robot for odor source
localization*, 2023, pp. 332–335, http://dx.doi.org/10.1109/CBS55922.2023.
10115389.

[56] L. Wang, Z. Yin, S. Pang, Learn to trace odors: Robotic odor source localiza-
tion via deep learning methods with real-world experiments, in: SoutheastCon
2023, 2023, pp. 524–531, http://dx.doi.org/10.1109/SoutheastCon51012.2023.
10115175.

[57] Z. Yan, Q.-H. Meng, T. Jing, S.-W. Chen, H.-R. Hou, A deep learning-based indoor
odor compass, IEEE Trans. Instrum. Meas. 72 (2023) 1–10, http://dx.doi.org/10.
1109/TIM.2023.3238053.

[58] Z. Yan, T. Jing, S. Chen, M. Jabeen, Q.-H. Meng, A novel odor source localiza-
tion method via a deep neural network-based odor compass, in: ROBOT2022:
Fifth Iberian Robotics Conference, Springer International Publishing, 2023, pp.
189–200, http://dx.doi.org/10.1007/978-3-031-21062-4_16.

[59] X. Chen, B. Yang, J. Huang, Y. Leng, C. Fu, A reinforcement learning fuzzy
system for continuous control in robotic odor plume tracking, Robotica 41 (2022)
1039–1054, http://dx.doi.org/10.1017/S0263574722001321.

[60] P. Ojeda, J. Monroy, J. Gonzalez-Jimenez, Robotic gas source localization with
probabilistic mapping and online dispersion simulation, 2023, http://dx.doi.org/
10.48550/arxiv.2304.08879.

[61] D. Badawi, I. Bassi, S. Ozev, A.E. Cetin, Deep-learning-based gas leak source
localization from sparse sensor data, IEEE Sens. J. 22 (21) (2022) 20999–21008,
http://dx.doi.org/10.1109/JSEN.2022.3202134.

[62] A.S.A. Yeon, A. Zakaria, S.M.M.S. Zakaria, R. Visvanathan, K. Kamarudin, L.M.
Kamarudin, Gas source localization via mobile robot with gas distribution
mapping and deep neural network, in: 2022 2nd International Conference on
Electronic and Electrical Engineering and Intelligent System, ICE3IS, 2022, pp.
120–124, http://dx.doi.org/10.1109/ICE3IS56585.2022.10010251.

[63] Y. Shan, H. Lu, W.T. Lou, Multi-faceted deep learning framework for dynamics
modeling and robot localization learning, J. Intell. Fuzzy Systems 45 (2023)
http://dx.doi.org/10.3233/jifs-230895.

[64] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C.
Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S.
McCandlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot
learners, in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.), in:
Advances in Neural Information Processing Systems, vol. 33, Curran Associates,
Inc., 2020, pp. 1877–1901.

[65] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H.W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J.
Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,
B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T.
Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K.
Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A.M. Dai, T.S. Pillai, M. Pellat,
A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B.
Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean,
S. Petrov, N. Fiedel, PaLM: Scaling language modeling with pathways, 2022,
arXiv:2204.02311.

[66] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B.
Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G.
Lample, LLaMA: Open and efficient foundation language models, 2023, arXiv:
2302.13971.
24 
[67] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S.
Balaji, V. Balcom, P. Baltescu, H. Bao, other authors, GPT-4 technical report,
2024, arXiv:2303.08774.

[68] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P.F. Christiano, J. Leike, R. Lowe, Training language
models to follow instructions with human feedback, in: S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), in: Advances in Neural Information
Processing Systems, vol. 35, Curran Associates, Inc., 2022, pp. 27730–27744.

[69] J. Wei, M. Bosma, V.Y. Zhao, K. Guu, A.W. Yu, B. Lester, N. Du, A.M. Dai, Q.V.
Le, Finetuned language models are zero-shot learners, 2022, arXiv:2109.01652.

[70] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le,
D. Zhou, Chain-of-thought prompting elicits reasoning in large language models,
2023, arXiv:2201.11903.

[71] A. Caines, L. Benedetto, S. Taslimipoor, C. Davis, Y. Gao, O. Andersen, Z. Yuan,
M. Elliott, R. Moore, C. Bryant, M. Rei, H. Yannakoudakis, A. Mullooly, D.
Nicholls, P. Buttery, On the application of large language models for language
teaching and assessment technology, 2023, arXiv:2307.08393.

[72] J. Göpfert, J.M. Weinand, P. Kuckertz, D. Stolten, Opportunities for large
language models and discourse in engineering design, 2023, http://dx.doi.org/
10.48550/arXiv.2306.09169, arXiv.org abs/2306.09169.

[73] W.X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J.
Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X.
Tang, Z. Liu, P. Liu, J.-Y. Nie, J.-R. Wen, A survey of large language models,
2023, arXiv:2303.18223.

[74] OpenAI. Introducing chatgpt, 2023, URL https://openai.com/blog/chatgpt/.
[75] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, D. Fox, RVT: Robotic view

transformer for 3D object manipulation, 2023, arXiv:2306.14896.
[76] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakr-

ishnan, K. Hausman, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson,
S. Jesmonth, N.J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee,
S. Levine, Y. Lu, U. Malla, D. Manjunath, I. Mordatch, O. Nachum, C. Parada,
J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao, M. Ryoo, G. Salazar, P.
Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran, V. Vanhoucke,
S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, B. Zitkovich, RT-1:
Robotics transformer for real-world control at scale, 2023, arXiv:2212.06817.

[77] Z. Zhao, H. Yu, H. Wu, X. Zhang, 6-DoF robotic grasping with transformer, 2023,
arXiv:2301.12476.

[78] T. Gervet, Z. Xian, N. Gkanatsios, K. Fragkiadaki, Act3D: 3D feature field
transformers for multi-task robotic manipulation, 2023, arXiv:2306.17817.

[79] D. Seamon, Improving knowledge extraction from LLMs for robotic task learning
through agent analysis, 2023, http://dx.doi.org/10.48550/arxiv.2306.06770.

[80] B. Hu, C. Zhao, P. Zhang, Z. Zhou, Y. Yang, Z. Xu, B. Liu, Enabling intelligent
interactions between an agent and an LLM: A reinforcement learning approach,
2023, http://dx.doi.org/10.48550/arXiv.2306.03604, arXiv.org abs/2306.03604.

[81] V.S. Dorbala, J.F. Mullen, D. Manocha, Can an embodied agent find your ‘‘cat-
shaped mug’’? LLM-based zero-shot object navigation, IEEE Robot. Autom. Lett.
9 (2023) 4083–4090.

[82] R. Schumann, W. Zhu, W. Feng, T.-J. Fu, S. Riezler, W.Y. Wang, VELMA:
Verbalization embodiment of LLM agents for vision and language navigation
in street view, in: AAAI Conference on Artificial Intelligence, 2023.

[83] J. Mai, J. Chen, B. Li, G. Qian, M. Elhoseiny, B. Ghanem, LLM as a robotic brain:
Unifying egocentric memory and control, 2023, arXiv:2304.09349.

[84] H. Sun, Y. Zhuang, L. Kong, B. Dai, C. Zhang, AdaPlanner: Adaptive planning
from feedback with language models, 2023, arXiv:2305.16653.

[85] S. Yu, M. Cheng, J. Yang, J. Ouyang, Y. Luo, C. Lei, Q. Liu, E. Chen, Multi-
source knowledge pruning for retrieval-augmented generation: A benchmark and
empirical study, 2024, arXiv:2409.13694.

[86] X. Li, Application of RAG model based on retrieval enhanced generation
technique in complex query processing, Adv. Comput. Signals Syst. 8 (6) (2023).

[87] C. Yao, S. Fujita, Adaptive control of retrieval-augmented generation for large
language models through reflective tags, Electronics 13 (23) (2024).

[88] S.E. Spatharioti, D. Rothschild, D.G. Goldstein, J.M. Hofman, Comparing tradi-
tional and LLM-based search for consumer choice: A randomized experiment,
2023, http://dx.doi.org/10.48550/arXiv.2307.03744, arXiv.org abs/2307.03744.

[89] Z. Zhang, D. Seth, S. Artham, J.G. Leishman, E.P. Gnanamanickam, Time-resolved
flowfield measurements of momentum-driven pulsed transient jets, AIAA J. 56
(4) (2017) 1434–1446.

[90] N. Ando, R. Kanzaki, A simple behaviour provides accuracy and flexibility in
odour plume tracking–the robotic control of sensory-motor coupling in silkmoths,
J. Exp. Biol. 218 (23) (2015) 3845–3854.

[91] W. Huang, P. Abbeel, D. Pathak, I. Mordatch, Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022, arXiv:
2201.07207.

[92] J. Farrell, S. Pang, W. Li, Chemical plume tracing via an autonomous underwater
vehicle, IEEE J. Ocean. Eng. 30 (2) (2005) 428–442.

[93] Q. Feng, H. Cai, Z. Chen, Y. Yang, J. Lu, F. Li, J. Xu, X. Li, Experimental study on
a comprehensive particle swarm optimization method for locating contaminant
sources in dynamic indoor environments with mechanical ventilation, Energy
Build. 196 (2019) 145–156.

http://dx.doi.org/10.1109/ISIC.1998.713672
http://dx.doi.org/10.5555/2001161.2001162
http://dx.doi.org/10.5555/2001161.2001162
http://dx.doi.org/10.5555/2001161.2001162
http://dx.doi.org/10.1007/S12046-020-1318-3
http://dx.doi.org/10.1109/CEC.2011.5949609
http://dx.doi.org/10.1109/CEC.2011.5949609
http://dx.doi.org/10.1109/CEC.2011.5949609
http://dx.doi.org/10.1109/ICCA.2009.5410516
http://dx.doi.org/10.1109/ICCA.2009.5410516
http://dx.doi.org/10.1109/ICCA.2009.5410516
http://dx.doi.org/10.48550/arxiv.2303.03830
http://dx.doi.org/10.48550/arxiv.2303.03830
http://dx.doi.org/10.48550/arxiv.2303.03830
http://dx.doi.org/10.3390/s23104799
http://dx.doi.org/10.3390/s23104799
http://dx.doi.org/10.3390/s23104799
http://dx.doi.org/10.3390/s23031140
http://dx.doi.org/10.1109/CBS55922.2023.10115389
http://dx.doi.org/10.1109/CBS55922.2023.10115389
http://dx.doi.org/10.1109/CBS55922.2023.10115389
http://dx.doi.org/10.1109/SoutheastCon51012.2023.10115175
http://dx.doi.org/10.1109/SoutheastCon51012.2023.10115175
http://dx.doi.org/10.1109/SoutheastCon51012.2023.10115175
http://dx.doi.org/10.1109/TIM.2023.3238053
http://dx.doi.org/10.1109/TIM.2023.3238053
http://dx.doi.org/10.1109/TIM.2023.3238053
http://dx.doi.org/10.1007/978-3-031-21062-4_16
http://dx.doi.org/10.1017/S0263574722001321
http://dx.doi.org/10.48550/arxiv.2304.08879
http://dx.doi.org/10.48550/arxiv.2304.08879
http://dx.doi.org/10.48550/arxiv.2304.08879
http://dx.doi.org/10.1109/JSEN.2022.3202134
http://dx.doi.org/10.1109/ICE3IS56585.2022.10010251
http://dx.doi.org/10.3233/jifs-230895
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb64
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2303.08774
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb68
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2307.08393
http://dx.doi.org/10.48550/arXiv.2306.09169
http://dx.doi.org/10.48550/arXiv.2306.09169
http://dx.doi.org/10.48550/arXiv.2306.09169
http://arxiv.org/abs/2303.18223
https://openai.com/blog/chatgpt/
http://arxiv.org/abs/2306.14896
http://arxiv.org/abs/2212.06817
http://arxiv.org/abs/2301.12476
http://arxiv.org/abs/2306.17817
http://dx.doi.org/10.48550/arxiv.2306.06770
http://dx.doi.org/10.48550/arXiv.2306.03604
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb81
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb81
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb81
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb81
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb81
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb82
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb82
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb82
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb82
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb82
http://arxiv.org/abs/2304.09349
http://arxiv.org/abs/2305.16653
http://arxiv.org/abs/2409.13694
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb86
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb86
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb86
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb87
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb87
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb87
http://dx.doi.org/10.48550/arXiv.2307.03744
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb89
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb89
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb89
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb89
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb89
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb90
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb90
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb90
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb90
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb90
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2201.07207
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb92
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb92
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb92
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93
http://refhub.elsevier.com/S0921-8890(25)00001-6/sb93


K.R. Mahmud et al. Robotics and Autonomous Systems 186 (2025) 104915 
Khan Raqib Mahmud is a Ph.D. student of department
of Computer Science at Louisiana Tech University in Rus-
ton, Louisiana. He received Master of Science (M. Sc.)
degree in Computer Simulation for Science and Engineering,
from KTH Royal Institute Technology, Sweden and M.
Sc. degree in Computational Engineering from University
of Erlangen–Nuremberg, Germany with Erasmus Mundus
Scholarship. His research involves Robot Navigation, Com-
puter Vision and Pattern Recognition, Machine Learning,
Artificial Intelligence and Autonomous Systems.

Lingxiao Wang received the B.S. degree in Electrical Engi-
neering from the Civil Aviation University of China, Tianjin,
China in 2015, M.S. degree in Electrical and Computer
Engineering, and Ph.D. in Electrical Engineering and Com-
puter Science from Embry-Riddle Aeronautical University,
Daytona Beach, FL, USA in 2017 and 2021, respectively.
Currently, he is Assistant Professor of Electrical Engineering
at Louisiana Tech University. His current research inter-
ests include autonomous systems, robotic applications, and
artificial intelligence. He focuses on developing intelligent
decision-making models to navigate and control robots using
AI methods.
25 
Sunzid Hassan is a Ph.D. student in the Department of
Computer Science at Louisiana Tech University, Ruston,
Louisiana 71270, USA. He received his Master’s degree
in Computer Science from Louisiana Tech University. His
current research interests are in the fields of embodied
artificial intelligence and robotic odor source localization.

Dr. Zheng Zhang is an active researcher in experimental
aerodynamics, fluid–structure interaction, and developing
relevant instrumentation for low-speed wind tunnel testing.
He obtained his Ph.D. in Aerospace Engineering and Me-
chanics from the University of Alabama in 2014. Following
his doctorate, he joined Neuroscience Collaborative Center,
University of Louisville as an instrumentation developer.
Since August 2015, he has been working as a Postdoctoral
Scholar, Research Assistant Professor, and then Senior Re-
search Scientist at Department of Aerospace Engineering at
Embry-Riddle Aeronautical University, teaching Experimen-
tal Aerodynamics and attending developing of ERAU’s new
low-speed wind tunnel. Dr. Zhang is a Member of AIAA
and APS. His researches have been sponsored by funds from
DoD, including ONR and ARO.


	A knowledge-driven framework for Robotic Odor Source Localization using large language models
	Introduction
	Related Works
	Robotic Odor Source Localization (OSL)
	Bio-Inspired Methods
	Engineering-Based Methods
	Learning-Based Methods

	LLM-based Agent
	Large Language Models
	Robotic Transformer
	LLM-based Agent in Robotic Tasks


	Methodology
	Problem Statement
	The Search Area and Plume Field
	The Robotic Agent

	Proposed Knowledge-Driven OSL Framework
	Reasoning Module
	Memory Module


	Experiments and Results
	Experimental Setup
	LLM-Based OSL Agent Configuration
	DQN-Based OSL Agent
	Sample Trials
	Ablation Study
	Comparative Analysis with DQN and Moth-inspired Method
	Real World Experiment Results of OSL
	Search Area
	Robotic Agent Specifications
	OSL Experimental Design
	Sample Trials
	Experimental Results


	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix. Prompts Generation in Knowledge-Driven OSL Framework
	Reasoning Prompts Generation
	Case Study of Reasoning Module

	Appendix . Data availability
	References


